温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
南京
外国语学校
高考
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;
③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
④垂直于同一直线的两条直线必平行.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
2.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )
A.甲 B.乙 C.丙 D.丁
3.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ).
A. B. C. D.
4.下列不等式成立的是( )
A. B. C. D.
5.已知复数,其中,,是虚数单位,则( )
A. B. C. D.
6.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于( )
A.1 B.2 C.3 D.4
7.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )
A. B. C. D.
8.设复数满足,在复平面内对应的点的坐标为则( )
A. B.
C. D.
9.已知命题p:“”是“”的充要条件;,,则( )
A.为真命题 B.为真命题
C.为真命题 D.为假命题
10.若的展开式中的常数项为-12,则实数的值为( )
A.-2 B.-3 C.2 D.3
11.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是( )
A.年该工厂的棉签产量最少
B.这三年中每年抽纸的产量相差不明显
C.三年累计下来产量最多的是口罩
D.口罩的产量逐年增加
12.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.
14.已知的终边过点,若,则__________.
15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.
16.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数的最大值为,其中.
(1)求实数的值;
(2)若求证:.
18.(12分)设复数满足(为虚数单位),则的模为______.
19.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.
(1)求证:;
(2)设平面与交于点,求证:为的中点.
20.(12分)已知函数,曲线在点处的切线在y轴上的截距为.
(1)求a;
(2)讨论函数和的单调性;
(3)设,求证:.
21.(12分)已知的内角,,的对边分别为,,,.
(1)若,证明:.
(2)若,,求的面积.
22.(10分)已知函数,.
(1)求证:在区间上有且仅有一个零点,且;
(2)若当时,不等式恒成立,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.
【题目详解】
①中,空间四边形的四条线段不共面,故①错误.
②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.
③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么
这两个角相等或互补,故③错误.
④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.
故选:B
【答案点睛】
本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.
2、A
【答案解析】
可采用假设法进行讨论推理,即可得到结论.
【题目详解】
由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,
丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;
假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,
乙:丙抓到了,丙:丁抓到了是假的,成立,
所以可以断定值班人是甲.
故选:A.
【答案点睛】
本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.
3、C
【答案解析】
易得,,又,平方计算即可得到答案.
【题目详解】
设双曲线C的左焦点为E,易得为平行四边形,
所以,又,
故,,,
所以,即,
故离心率为.
故选:C.
【答案点睛】
本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.
4、D
【答案解析】
根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.
【题目详解】
对于,,,错误;
对于,在上单调递减,,错误;
对于,,,,错误;
对于,在上单调递增,,正确.
故选:.
【答案点睛】
本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.
5、D
【答案解析】
试题分析:由,得,则,故选D.
考点:1、复数的运算;2、复数的模.
6、B
【答案解析】
设数列的公差为.由,成等比数列,列关于的方程组,即求公差.
【题目详解】
设数列的公差为,
①.
成等比数列,②,
解①②可得.
故选:.
【答案点睛】
本题考查等差数列基本量的计算,属于基础题.
7、A
【答案解析】
由已知可得,根据二倍角公式即可求解.
【题目详解】
角的顶点与原点重合,始边与轴的正半轴重合,
终边经过点,则,
.
故选:A.
【答案点睛】
本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.
8、B
【答案解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.
【题目详解】
在复平面内对应的点的坐标为,则,
,
∵,
代入可得,
解得.
故选:B.
【答案点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
9、B
【答案解析】
由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解
【题目详解】
由函数是R上的增函数,知命题p是真命题.
对于命题q,当,即时,;
当,即时,,
由,得,无解,
因此命题q是假命题.所以为假命题,A错误;
为真命题,B正确;
为假命题,C错误;
为真命题,D错误.
故选:B
【答案点睛】
本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.
10、C
【答案解析】
先研究的展开式的通项,再分中,取和两种情况求解.
【题目详解】
因为的展开式的通项为,
所以的展开式中的常数项为:,
解得,
故选:C.
【答案点睛】
本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.
11、C
【答案解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.
【题目详解】
由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;
由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.
故选:C.
【答案点睛】
本题考查堆积图的应用,考查数据处理能力,属于基础题.
12、B
【答案解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.
【题目详解】
由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,
由于,,∴,∴,,
∴点坐标为,代入抛物线方程得,,
∴,.
故选:B.
【答案点睛】
本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.
【题目详解】
根据题中的程序框图可得:,
执行循环体,,
不满足条件,执行循环体,,
此时,满足条件,退出循环,输出的值为.
故答案为:
【答案点睛】
本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.
14、
【答案解析】
】由题意利用任意角的三角函数的定义,求得的值.
【题目详解】
∵的终边过点,若,
.
即答案为-2.
【答案点睛】
本题主要考查任意角的三角函数的定义和诱导公式,属基础题.
15、0
【答案解析】
由题意,列方程组可求,即求.
【题目详解】
∵在点处的切线方程为,
,代入得①.
又②.
联立①②解得:.
.
故答案为:0.
【答案点睛】
本题考查导数的几何意义,属于基础题.
16、
【答案解析】
由已知条件得出关于首项和公差的方程组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.
【题目详解】
设等差数列的公差为,由,解得,
.
所以,当时,取得最大值,
对任意都有成立,则为数列的最大值,因此,.
故答案为:.
【答案点睛】
本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)1;(2)证明见解析.
【答案解析】
(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.
(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.
【题目详解】
(1)
当时,取得最大值.
(2)证明:由(1)得,,