温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
全国
版天一大
联考
高考
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列的前n项和为,若,则( )
A. B. C.7 D.2
2.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( )
A. B. C. D.
3.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )
A. B.3 C. D.
4.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为( )
A. B. C. D.
5.已知偶函数在区间内单调递减,,,,则,,满足( )
A. B. C. D.
6.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )
A. B. C. D.
7.在中,为上异于,的任一点,为的中点,若,则等于( )
A. B. C. D.
8.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )
A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变
D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
9.已知为锐角,且,则等于( )
A. B. C. D.
10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )
A. B. C. D.
11.数列满足,且,,则( )
A. B.9 C. D.7
12.在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )
A. B. C.1 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,已知是的中点,且,点满足,则的取值范围是_______.
14.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.
15.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________
16.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列满足(),数列的前项和,(),且,.
(1)求数列的通项公式:
(2)求数列的通项公式.
(3)设,记是数列的前项和,求正整数,使得对于任意的均有.
18.(12分)已知数列满足,且.
(1)求证:数列是等差数列,并求出数列的通项公式;
(2)求数列的前项和.
19.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.
(1)求证:;
(2)求平面与平面所成二面角的正弦值.
20.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.
(1)若平面,证明:平面.
(2)求二面角的余弦值.
21.(12分)已知函数.
(1)求不等式的解集;
(2)若存在实数,使得不等式成立,求实数的取值范围.
22.(10分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.
(1)证明:平面;
(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.
【题目详解】
因为,所以,所以,
所以,
故选:B
【答案点睛】
本题主要考查等差数列的性质及前项和公式,属于基础题.
2、D
【答案解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.
【题目详解】
如图,平面截球所得截面的图形为圆面.
正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.
依题意,所以,设球的半径为,
在中,,,,
由勾股定理:,解得,此外接球的体积为,
由于平面平面,所以平面,
球心到平面的距离为,
则,
所以三棱锥体积为,
所以此外接球的体积与三棱锥体积比值为.
故选:D.
【答案点睛】
本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.
3、D
【答案解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.
【题目详解】
由题意,设点.
,
即,
整理得,
则,解得或.
.
故选:.
【答案点睛】
本题考查直线与方程,考查平面内两点间距离公式,属于中档题.
4、D
【答案解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.
【题目详解】
如图所示:
因为,所以,
又因为,所以,所以,
所以,所以,
所以,所以,
所以渐近线方程为.
故选:D.
【答案点睛】
本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.
5、D
【答案解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小
【题目详解】
因为偶函数在减,所以在上增,
,,,∴.
故选:D
【答案点睛】
本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.
6、C
【答案解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解
【题目详解】
先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,
故选:C
【答案点睛】
本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题
7、A
【答案解析】
根据题意,用表示出与,求出的值即可.
【题目详解】
解:根据题意,设,则
,
又,
,
,
故选:A.
【答案点睛】
本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.
8、A
【答案解析】
由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.
【题目详解】
由图可知,,
又,,
又,,,
为了得到这个函数的图象,
只需将的图象上的所有向左平移个长度单位,
得到的图象,
再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.
故选:A
【答案点睛】
本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.
9、C
【答案解析】
由可得,再利用计算即可.
【题目详解】
因为,,所以,
所以.
故选:C.
【答案点睛】
本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.
10、C
【答案解析】
将圆锥的体积用两种方式表达,即,解出即可.
【题目详解】
设圆锥底面圆的半径为r,则,又,
故,所以,.
故选:C.
【答案点睛】
本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.
11、A
【答案解析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.
【题目详解】
数列满足,则数列为等差数列,
,,
,,
,
,
故选:.
【答案点睛】
本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.
12、B
【答案解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;
【题目详解】
解:因为,
所以
因为
所以
,即,,
时
故选:
【答案点睛】
本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由中点公式的向量形式可得,即有,
设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围.
【题目详解】
是的中点,∴,即
设,于是
(1)当共线时,因为,
①若点在之间,则,此时,;
②若点在的延长线上,则,此时,.
(2)当不共线时,根据余弦定理可得,
解得,由,解得
.
综上,
故答案为:.
【答案点睛】
本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题.
14、
【答案解析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.
【题目详解】
由题意,.
展开式通项为,由得,
∴常数项为.
故答案为:.
【答案点睛】
本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.
15、4
【答案解析】
根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解.
【题目详解】
由题意,函数,且,,
可得,
,
又由,可得为常数列,且,
数列表示首项为4,公差为2的等差数列,所以,
其中数列满足,
所以,
所以,
又由,
可得数列的前n项和为,
数列的前n项和为,
所以数列的前项和为,满足,
所以,即,
又由表示不超过实数的最大整数,所以.
故答案为:4.
【答案点睛】
本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.
16、,
【答案解析】
根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.
【题目详解】
由图象可知,,,,,
从题图中可以看出,从时是函数的半个周期,则,.
又,,得,取,
所以,.
故答案为:,.
【答案点睛】
本题考查由图象求函数解析式,考查计算能力,属于中等题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)().(2),.(3)
【答案解析】
(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;
(2)由递推公式,得, 结合数列性质