分享
2023届全国版天一大联考高考全国统考预测密卷数学试卷(含解析).doc
下载文档

ID:18466

大小:2.69MB

页数:23页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 全国 版天一大 联考 高考 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设等差数列的前n项和为,若,则( ) A. B. C.7 D.2 2.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( ) A. B. C. D. 3.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( ) A. B.3 C. D. 4.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为( ) A. B. C. D. 5.已知偶函数在区间内单调递减,,,,则,,满足( ) A. B. C. D. 6.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( ) A. B. C. D. 7.在中,为上异于,的任一点,为的中点,若,则等于( ) A. B. C. D. 8.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( ) A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变 B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变 D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 9.已知为锐角,且,则等于( ) A. B. C. D. 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( ) A. B. C. D. 11.数列满足,且,,则( ) A. B.9 C. D.7 12.在钝角中,角所对的边分别为,为钝角,若,则的最大值为( ) A. B. C.1 D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在中,已知是的中点,且,点满足,则的取值范围是_______. 14.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______. 15.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________ 16.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列满足(),数列的前项和,(),且,. (1)求数列的通项公式: (2)求数列的通项公式. (3)设,记是数列的前项和,求正整数,使得对于任意的均有. 18.(12分)已知数列满足,且. (1)求证:数列是等差数列,并求出数列的通项公式; (2)求数列的前项和. 19.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面. (1)求证:; (2)求平面与平面所成二面角的正弦值. 20.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点. (1)若平面,证明:平面. (2)求二面角的余弦值. 21.(12分)已知函数. (1)求不等式的解集; (2)若存在实数,使得不等式成立,求实数的取值范围. 22.(10分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足. (1)证明:平面; (2)求二面角的余弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果. 【题目详解】 因为,所以,所以, 所以, 故选:B 【答案点睛】 本题主要考查等差数列的性质及前项和公式,属于基础题. 2、D 【答案解析】 如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案. 【题目详解】 如图,平面截球所得截面的图形为圆面. 正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、. 依题意,所以,设球的半径为, 在中,,,, 由勾股定理:,解得,此外接球的体积为, 由于平面平面,所以平面, 球心到平面的距离为, 则, 所以三棱锥体积为, 所以此外接球的体积与三棱锥体积比值为. 故选:D. 【答案点睛】 本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力. 3、D 【答案解析】 设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值. 【题目详解】 由题意,设点. , 即, 整理得, 则,解得或. . 故选:. 【答案点睛】 本题考查直线与方程,考查平面内两点间距离公式,属于中档题. 4、D 【答案解析】 根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程. 【题目详解】 如图所示: 因为,所以, 又因为,所以,所以, 所以,所以, 所以,所以, 所以渐近线方程为. 故选:D. 【答案点睛】 本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半. 5、D 【答案解析】 首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小 【题目详解】 因为偶函数在减,所以在上增, ,,,∴. 故选:D 【答案点睛】 本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题. 6、C 【答案解析】 由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解 【题目详解】 先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时, 故选:C 【答案点睛】 本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题 7、A 【答案解析】 根据题意,用表示出与,求出的值即可. 【题目详解】 解:根据题意,设,则 , 又, , , 故选:A. 【答案点睛】 本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题. 8、A 【答案解析】 由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论. 【题目详解】 由图可知,, 又,, 又,,, 为了得到这个函数的图象, 只需将的图象上的所有向左平移个长度单位, 得到的图象, 再将的图象上各点的横坐标变为原来的(纵坐标不变)即可. 故选:A 【答案点睛】 本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题. 9、C 【答案解析】 由可得,再利用计算即可. 【题目详解】 因为,,所以, 所以. 故选:C. 【答案点睛】 本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 10、C 【答案解析】 将圆锥的体积用两种方式表达,即,解出即可. 【题目详解】 设圆锥底面圆的半径为r,则,又, 故,所以,. 故选:C. 【答案点睛】 本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力. 11、A 【答案解析】 先由题意可得数列为等差数列,再根据,,可求出公差,即可求出. 【题目详解】 数列满足,则数列为等差数列, ,, ,, , , 故选:. 【答案点睛】 本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题. 12、B 【答案解析】 首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值; 【题目详解】 解:因为, 所以 因为 所以 ,即,, 时 故选: 【答案点睛】 本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由中点公式的向量形式可得,即有, 设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围. 【题目详解】 是的中点,∴,即 设,于是 (1)当共线时,因为, ①若点在之间,则,此时,; ②若点在的延长线上,则,此时,. (2)当不共线时,根据余弦定理可得, 解得,由,解得 . 综上, 故答案为:. 【答案点睛】 本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题. 14、 【答案解析】 由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项. 【题目详解】 由题意,. 展开式通项为,由得, ∴常数项为. 故答案为:. 【答案点睛】 本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键. 15、4 【答案解析】 根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解. 【题目详解】 由题意,函数,且,, 可得, , 又由,可得为常数列,且, 数列表示首项为4,公差为2的等差数列,所以, 其中数列满足, 所以, 所以, 又由, 可得数列的前n项和为, 数列的前n项和为, 所以数列的前项和为,满足, 所以,即, 又由表示不超过实数的最大整数,所以. 故答案为:4. 【答案点睛】 本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题. 16、, 【答案解析】 根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式. 【题目详解】 由图象可知,,,,, 从题图中可以看出,从时是函数的半个周期,则,. 又,,得,取, 所以,. 故答案为:,. 【答案点睛】 本题考查由图象求函数解析式,考查计算能力,属于中等题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)().(2),.(3) 【答案解析】 (1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可; (2)由递推公式,得, 结合数列性质

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开