温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏
南京市
盐城市
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( )
A. B. C. D.
2.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为
A. B. C. D.
3.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
4.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是( )
A. B. C. D.
5.已知复数满足,则( )
A. B.2 C.4 D.3
6.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )
A. B. C. D.
7.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=( )
A.﹣2 B.﹣1 C.2 D.4
8.已知为一条直线,为两个不同的平面,则下列说法正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )
A.圆,但要去掉两个点 B.椭圆,但要去掉两个点
C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点
10.点为的三条中线的交点,且,,则的值为( )
A. B. C. D.
11.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )
A. B. C. D.
12.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知随机变量,且,则______
14.四面体中,底面,,,则四面体的外接球的表面积为______
15.已知满足且目标函数的最大值为7,最小值为1,则___________.
16.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知集合,集合,.
(1)求集合B;
(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.
18.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C有唯一的公共点,求角α的大小.
19.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
20.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,).
(1)求数列的通项公式;
(2)证明:数列是等差数列;
(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.
21.(12分)表示,中的最大值,如,己知函数,.
(1)设,求函数在上的零点个数;
(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.
22.(10分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.
【题目详解】
如图所示,为弯管,为6个座位的宽度,
则
设弧所在圆的半径为,则
解得
可以近似地认为,即
于是,长
所以是最接近的,其中选项A的长度比还小,不可能,
因此只能选B,260或者由,
所以弧长.
故选:B
【答案点睛】
本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.
2、B
【答案解析】
考点:程序框图.
分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.
解:程序在运行过程中各变量的值如下表示:
S i 是否继续循环
循环前 1 1/
第一圈3 2 是
第二圈7 3 是
第三圈15 4 是
第四圈31 5 否
故最后当i<5时退出,
故选B.
3、A
【答案解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,
求出等式左边式子的范围,将等式右边代入,从而求解.
【题目详解】
解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,
,
当时,,
当时,,
,
综上:.
故选:A.
【答案点睛】
本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.
4、C
【答案解析】
列出循环的每一步,可得出输出的的值.
【题目详解】
,输入,,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数不成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,不成立,是偶数成立,则;
,成立,跳出循环,输出的值为.
故选:C.
【答案点睛】
本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.
5、A
【答案解析】
由复数除法求出,再由模的定义计算出模.
【题目详解】
.
故选:A.
【答案点睛】
本题考查复数的除法法则,考查复数模的运算,属于基础题.
6、C
【答案解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.
【题目详解】
解:抛物线的焦点为
可得双曲线
即为的渐近线方程为
由题意可得,即
又,即
解得,.
即双曲线的方程为.
故选:C
【答案点睛】
本题主要考查了求双曲线的方程,属于中档题.
7、C
【答案解析】
根据对称性即可求出答案.
【题目详解】
解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,
故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,
故选:C.
【答案点睛】
本题主要考查函数的对称性的应用,属于中档题.
8、D
【答案解析】
A. 若,则或,故A错误;
B. 若,则或故B错误;
C. 若,则或,或与相交;
D. 若,则,正确.
故选D.
9、A
【答案解析】
根据题意可得,即知C在以AB为直径的圆上.
【题目详解】
,,
,
又,,
平面,又平面
,
故在以为直径的圆上,
又是内异于的动点,
所以的轨迹是圆,但要去掉两个点A,B
故选:A
【答案点睛】
本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.
10、B
【答案解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.
【题目详解】
如图:
点为的三条中线的交点
,
由可得:,
又因,,
.
故选:B
【答案点睛】
本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.
11、D
【答案解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.
【题目详解】
由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有
种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二
种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率
为,故甲、乙两人不在同一个单位的概率为.
故选:D.
【答案点睛】
本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.
12、D
【答案解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.
【题目详解】
设四个支点所在球的小圆的圆心为,球心为,
由题意,球的体积为,即可得球的半径为1,
又由边长为的正方形硬纸,可得圆的半径为,
利用球的性质可得,
又由到底面的距离即为侧面三角形的高,其中高为,
所以球心到底面的距离为.
故选:D.
【答案点睛】
本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、0.1
【答案解析】
根据原则,可得,简单计算,可得结果.
【题目详解】
由题可知:随机变量,则期望为
所以
故答案为:
【答案点睛】
本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.
14、
【答案解析】
由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.
【题目详解】
解:如图,在四面体中,底面,,,
可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,,
则长方体的对角线长为,则三棱锥的外接球的半径为1.
其表面积为.
故答案为:.
【答案点睛】
本题考查多面体外接球表面积的求法,补形是关键,属于中档题.
15、-2
【答案解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时