分享
2023届中央民族大学附属中学高考数学五模试卷(含解析).doc
下载文档

ID:18448

大小:1.58MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 中央民族大学 附属中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若函数有且仅有一个零点,则实数的值为( ) A. B. C. D. 2.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A. B. C. D. 3.若为虚数单位,则复数,则在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( ) A.69人 B.84人 C.108人 D.115人 5.已知为锐角,且,则等于( ) A. B. C. D. 6.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于(  ) A. B.2 C.3 D.6 7.已知平行于轴的直线分别交曲线于两点,则的最小值为( ) A. B. C. D. 8.如图,在中,,是上一点,若,则实数的值为( ) A. B. C. D. 9.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=( ) A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6} 10.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( ) A.8 B.9 C.10 D.11 11.公比为2的等比数列中存在两项,,满足,则的最小值为( ) A. B. C. D. 12.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中,常数项为______;系数最大的项是______. 14.在△ABC中,a=3,,B=2A,则cosA=_____. 15.已知数列满足对任意,若,则数列的通项公式________. 16.在各项均为正数的等比数列中,,且,成等差数列,则___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1. (1)求{an}的通项公式; (2)设bn,求数列{bn}的前n项和. 18.(12分)设等比数列的前项和为,若 (Ⅰ)求数列的通项公式; (Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:. 19.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图. (1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率; (2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率, (3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 20.(12分)已知. (1)解不等式; (2)若均为正数,且,求的最小值. 21.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4. (1)求椭圆C的标准方程; (2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程. 22.(10分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点. (1)求证:. (2)若,求二面角的余弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果. 【题目详解】 , 则, , ,所以,函数的图象关于直线对称. 若函数的零点不为,则该函数的零点必成对出现,不合题意. 所以,,即,解得或. ①当时,令,得,作出函数与函数的图象如下图所示: 此时,函数与函数的图象有三个交点,不合乎题意; ②当时,,,当且仅当时,等号成立,则函数有且只有一个零点. 综上所述,. 故选:D. 【答案点睛】 本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题. 2、C 【答案解析】 先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【题目详解】 从6个球中摸出2个,共有种结果, 两个球的号码之和是3的倍数,共有 摸一次中奖的概率是, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是, 有5人参与摸奖,恰好有2人获奖的概率是, 故选:. 【答案点睛】 本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题. 3、B 【答案解析】 首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解. 【题目详解】 , , 则在复平面内对应的点的坐标为,位于第二象限. 故选:B 【答案点睛】 本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题. 4、D 【答案解析】 先求得名学生中,只能说出一种或一种也说不出的人数,由此利用比例,求得名学生中对四大发明只能说出一种或一种也说不出的人数. 【题目详解】 在这100名学生中,只能说出一种或一种也说不出的有人,设对四大发明只能说出一种或一种也说不出的有人,则,解得人. 故选:D 【答案点睛】 本小题主要考查利用样本估计总体,属于基础题. 5、C 【答案解析】 由可得,再利用计算即可. 【题目详解】 因为,,所以, 所以. 故选:C. 【答案点睛】 本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 6、A 【答案解析】 由圆心到渐近线的距离等于半径列方程求解即可. 【题目详解】 双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=. 答案:A 【答案点睛】 本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 7、A 【答案解析】 设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值. 【题目详解】 解:设直线为,则,, 而满足, 那么 设,则,函数在上单调递减,在上单调递增, 所以 故选:. 【答案点睛】 本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题. 8、C 【答案解析】 由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值. 【题目详解】 由题意及图,, 又,,所以,∴(1﹣m), 又t,所以,解得m,t, 故选C. 【答案点睛】 本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题. 9、B 【答案解析】 按补集、交集定义,即可求解. 【题目详解】 ={1,3,5,6},={1,2,5,6}, 所以={1,5,6}. 故选:B. 【答案点睛】 本题考查集合间的运算,属于基础题. 10、B 【答案解析】 根据题意计算,,,解不等式得到答案. 【题目详解】 ∵是以1为首项,2为公差的等差数列,∴. ∵是以1为首项,2为公比的等比数列,∴. ∴ . ∵,∴,解得.则当时,的最大值是9. 故选:. 【答案点睛】 本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用. 11、D 【答案解析】 根据已知条件和等比数列的通项公式,求出关系,即可求解. 【题目详解】 , 当时,,当时,, 当时,,当时,, 当时,,当时,, 最小值为. 故选:D. 【答案点睛】 本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题. 12、B 【答案解析】 根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解. 【题目详解】 ∵双曲线与的渐近线相同,且焦点在轴上, ∴可设双曲线的方程为,一个焦点为, ∴,∴,故的标准方程为. 故选:B 【答案点睛】 此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项. 【题目详解】 的展开式的通项为, 令,得,所以,展开式中的常数项为; 令,令,即, 解得,,,因此,展开式中系数最大的项为. 故答案为:;. 【答案点睛】 本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题. 14、 【答案解析】 由已知利用正弦定理,二倍角的正弦函数公式即可计算求值得解. 【题目详解】 解:∵a=3,,B=2A, ∴由正弦定理可得:, ∴cosA. 故答案为. 【答案点睛】 本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题. 15、 【答案解析】 由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论. 【题目详解】 由,得 ,数列是等比数列,首项为2,公比为2, ,, , ,满足上式,. 故答案为:. 【答案点睛】 本题考查数列的通项公

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开