温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
镇江市
镇江
中学
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,其中是虚数单位,则对应的点的坐标为( )
A. B. C. D.
2.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )
A. B. C. D.
3.若集合,,则( )
A. B. C. D.
4.若实数、满足,则的最小值是( )
A. B. C. D.
5.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )
A.2或 B.2或 C.或 D.或
6.已知集合,,若,则( )
A.或 B.或 C.或 D.或
7.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是( )
A.年该工厂的棉签产量最少
B.这三年中每年抽纸的产量相差不明显
C.三年累计下来产量最多的是口罩
D.口罩的产量逐年增加
8.若为虚数单位,则复数,则在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )
A.线性相关关系较强,b的值为1.25
B.线性相关关系较强,b的值为0.83
C.线性相关关系较强,b的值为-0.87
D.线性相关关系太弱,无研究价值
10.已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )
A. B.
C. D.
11.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )
A. B. C. D.
12.已知函数,当时,恒成立,则的取值范围为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.
14.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为_______.
15.若函数的图像上存在点,满足约束条件,则实数的最大值为__________.
16.若变量,满足约束条件,则的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.
18.(12分)已知函数,曲线在点处的切线在y轴上的截距为.
(1)求a;
(2)讨论函数和的单调性;
(3)设,求证:.
19.(12分)已知函数,(其中,).
(1)求函数的最小值.
(2)若,求证:.
20.(12分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.
(1)求证:直线平面;
(2)求二面角的正弦值.
21.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.
组别
频数
(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
②每次获赠的随机话费和对应的概率为:
赠送话费的金额(单位:元)
概率
现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.
附:参考数据与公式:,若,则,,
22.(10分)已知函数,.
(1)求的值;
(2)令在上最小值为,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
利用复数相等的条件求得,,则答案可求.
【题目详解】
由,得,.
对应的点的坐标为,,.
故选:.
【答案点睛】
本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.
2、B
【答案解析】
,将,代入化简即可.
【题目详解】
.
故选:B.
【答案点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.
3、A
【答案解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【题目详解】
解:由集合,解得,
则
故选:.
【答案点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
4、D
【答案解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案
【题目详解】
作出不等式组所表示的可行域如下图所示:
联立,得,可得点,
由得,平移直线,
当该直线经过可行域的顶点时,该直线在轴上的截距最小,
此时取最小值,即.
故选:D.
【答案点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.
5、A
【答案解析】
根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.
【题目详解】
设双曲线C的渐近线方程为y=kx,是圆的切线得: ,
得双曲线的一条渐近线的方程为 ∴焦点在x、y轴上两种情况讨论:
①当焦点在x轴上时有:
②当焦点在y轴上时有:
∴求得双曲线的离心率 2或.
故选:A.
【答案点睛】
本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.
6、B
【答案解析】
因为,所以,所以或.
若,则,满足.
若,解得或.若,则,满足.若,显然不成立,综上或,选B.
7、C
【答案解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.
【题目详解】
由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;
由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.
故选:C.
【答案点睛】
本题考查堆积图的应用,考查数据处理能力,属于基础题.
8、B
【答案解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.
【题目详解】
,
,
则在复平面内对应的点的坐标为,位于第二象限.
故选:B
【答案点睛】
本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.
9、B
【答案解析】
根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.
【题目详解】
散点图里变量的对应点分布在一条直线附近,且比较密集,
故可判断语文成绩和英语成绩之间具有较强的线性相关关系,
且直线斜率小于1,故选B.
【答案点睛】
本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.
10、B
【答案解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.
【题目详解】
由题,
即
由累加法可得:
即
对于任意的,不等式恒成立
即
令
可得且
即
可得或
故选B
【答案点睛】
本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.
11、A
【答案解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.
【题目详解】
由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.
故选:A.
【答案点睛】
本题考查古典概型概率,解题关键是求出基本事件的个数.
12、A
【答案解析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.
【题目详解】
由题意,若,显然不是恒大于零,故.
,则在上恒成立;
当时,等价于,
因为,所以.
设,由,显然在上单调递增,
因为,所以等价于,即,则.
设,则.
令,解得,易得在上单调递增,在上单调递减,
从而,故.
故选:A.
【答案点睛】
本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、3
【答案解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值
【题目详解】
解:设圆柱底面圆的半径为,圆柱的高为,由题意知
,解得.
故答案为:3.
【答案点睛】
本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.
14、
【答案解析】
设为的中点,根据弦长公式,只需最小,在中,根据余弦定理将表示出来,由,得到
,结合弦长公式得到,求出点的轨迹方程,即可求解.
【题目详解】
设为的中点,
在中,,①
在中,,②
①②得,
即,
,.
,得.
所以,.
故答案为:.
【答案点睛】
本题考查直线与圆的位置关系、相交弦长的最值,解题的关键求出点的轨迹方程,考查计算求解能力,属于中档题.
15、1
【答案解析】
由题知x>0,且满足约束条件的图象为
由图可知当与交于点B(2,1),当直线过B点时,m取得最大值为1.
点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直