分享
2023届江苏省金陵中学高考数学五模试卷(含解析).doc
下载文档

ID:18437

大小:2.25MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 江苏省 金陵 中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设全集,集合,,则( ) A. B. C. D. 2.等比数列若则( ) A.±6 B.6 C.-6 D. 3.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( ) A. B. C. D. 4.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是( ) A. B. C. D. 5.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=( ) A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0) 6.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( ) A. B. C. D. 7.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为( ) A. B. C. D. 8.等比数列中,,则与的等比中项是( ) A.±4 B.4 C. D. 9.若非零实数、满足,则下列式子一定正确的是( ) A. B. C. D. 10.执行如图所示的程序框图,则输出的( ) A.2 B.3 C. D. 11.在中,“”是“为钝角三角形”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 12.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中的常数项为_______. 14.如图,在中,已知,为边的中点.若,垂足为,则的值为__. 15.已知函数,若,则的取值范围是__ 16.已知数列的各项均为正数,记为的前n项和,若,,则________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面. 求证:平面; 若,,求证:平面平面. 18.(12分)已知x,y,z均为正数. (1)若xy<1,证明:|x+z|⋅|y+z|>4xyz; (2)若=,求2xy⋅2yz⋅2xz的最小值. 19.(12分)已知数列,满足. (1)求数列,的通项公式; (2)分别求数列,的前项和,. 20.(12分)已知 (1)若 ,且函数 在区间 上单调递增,求实数a的范围; (2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明. 21.(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4. (1)求椭圆C的标准方程; (2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围. 22.(10分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示: 普查对象类别 顺利 不顺利 合计 企事业单位 40 10 50 个体经营户 100 50 150 合计 140 60 200 (1)写出选择5个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”; (3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值. 附: 0.10 0.010 0.001 2.706 6.635 10.828 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 可解出集合,然后进行补集、交集的运算即可. 【题目详解】 ,,则,因此,. 故选:B. 【答案点睛】 本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题. 2、B 【答案解析】 根据等比中项性质代入可得解,由等比数列项的性质确定值即可. 【题目详解】 由等比数列中等比中项性质可知,, 所以, 而由等比数列性质可知奇数项符号相同,所以, 故选:B. 【答案点睛】 本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题. 3、D 【答案解析】 将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数; 当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解; 【题目详解】 函数在内都有两个不同的零点, 等价于方程在内都有两个不同的根. ,所以当时,,是增函数; 当时,,是减函数.因此. 设,, 若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解. 设其解为,当时,在上是增函数; 当时,在上是减函数. 因为,方程在内有两个不同的根, 所以,且.由,即,解得. 由,即,所以. 因为,所以,代入,得. 设,,所以在上是增函数, 而,由可得,得. 由在上是增函数,得. 综上所述, 故选:D. 【答案点睛】 本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题 4、D 【答案解析】 利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可. 【题目详解】 在函数的解析式中,令,可得,则点,直线的方程为, 矩形中位于曲线上方区域的面积为, 矩形的面积为, 由几何概型的概率公式得,所以,. 故选:D. 【答案点睛】 本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题. 5、C 【答案解析】 先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集. 【题目详解】 因为N={x|x(x+3)≤0}={x|-3≤x≤0}, 又因为M={x|﹣1<x<2}, 所以M∩N={x|﹣1<x≤0}. 故选:C 【答案点睛】 本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题. 6、B 【答案解析】 为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解. 【题目详解】 如图所示,为弯管,为6个座位的宽度, 则 设弧所在圆的半径为,则 解得 可以近似地认为,即 于是,长 所以是最接近的,其中选项A的长度比还小,不可能, 因此只能选B,260或者由, 所以弧长. 故选:B 【答案点睛】 本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题. 7、B 【答案解析】 根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值. 【题目详解】 因为,所以四边形为平行四边形.又因为平面,平面, 所以平面,所以平面.在直角三角形中,, 设,则, 所以,所 以.又因为,当且仅当,即时等号成立, 所以. 故选:B. 【答案点睛】 本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值. 8、A 【答案解析】 利用等比数列的性质可得 ,即可得出. 【题目详解】 设与的等比中项是. 由等比数列的性质可得, . ∴与的等比中项 故选A. 【答案点睛】 本题考查了等比中项的求法,属于基础题. 9、C 【答案解析】 令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得. 【题目详解】 令,则,,,, ,因此,. 故选:C. 【答案点睛】 本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 10、B 【答案解析】 运行程序,依次进行循环,结合判断框,可得输出值. 【题目详解】 起始阶段有,, 第一次循环后,, 第二次循环后,, 第三次循环后,, 第四次循环后,, 所有后面的循环具有周期性,周期为3, 当时,再次循环输出的,,此时,循环结束,输出, 故选:B 【答案点睛】 本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型. 11、C 【答案解析】 分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果. 详解:由题意可得,在中,因为, 所以,因为, 所以,, 结合三角形内角的条件,故A,B同为锐角,因为, 所以,即,所以, 因此,所以是锐角三角形,不是钝角三角形, 所以充分性不满足, 反之,若是钝角三角形,也推不出“,故必要性不成立, 所以为既不充分也不必要条件,故选D. 点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征. 12、D 【答案解析】 由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案. 【题目详解】 由题,得, 因为的图象与直线的两个相邻交点的距离等于, 所以函数的最小正周期,则, 所以, 当时,, 所以是函数的一条对称轴, 故选:D 【答案点睛】 本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项. 【题目详解】 的展开式通项公式为: , 令,所以,所以常数项为. 故答案为:. 【答案点睛】 本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值. 14、 【答案解析】 , 由余弦定理,得, 得,,, 所以,所以. 点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开