分享
2023届河南省永城市第三高级中学高考适应性考试数学试卷(含解析).doc
下载文档

ID:18420

大小:2.93MB

页数:24页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 河南省 永城市 第三 高级 中学 高考 适应性 考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图是计算值的一个程序框图,其中判断框内应填入的条件是( ) A. B. C. D. 2.设集合,,则( ) A. B. C. D. 3.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为( ) A. B. C. D. 4.设函数满足,则的图像可能是 A. B. C. D. 5.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( ) A. B. C. D. 6.设函数的导函数,且满足,若在中,,则( ) A. B. C. D. 7.在中,分别为所对的边,若函数 有极值点,则的范围是( ) A. B. C. D. 8.函数(其中,,)的图象如图,则此函数表达式为( ) A. B. C. D. 9.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( ) A.3 B. C.4 D. 10.在直三棱柱中,己知,,,则异面直线与所成的角为( ) A. B. C. D. 11.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( ) A. B. C. D. 12.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,,当面积最大时,直线的方程为______. 14.已知, 是互相垂直的单位向量,若 与λ的夹角为60°,则实数λ的值是__. 15.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____. 16.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米). (1)分别求,关于x的函数关系式; (2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值. 18.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点. (Ⅰ)证明:面; (Ⅱ)若,求二面角的余弦值. 19.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3. (1)求椭圆C的方程; (2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由. 20.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元. 年龄 (单位:岁) 保费 (单位:元) (1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值; (2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算? 21.(12分)已知函数,,且. (1)当时,求函数的减区间; (2)求证:方程有两个不相等的实数根; (3)若方程的两个实数根是,试比较,与的大小,并说明理由. 22.(10分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点. (1)证明:平面; (2)求二面角平面角的余弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式. 【题目详解】 因为该程序图是计算值的一个程序框圈 所以共循环了5次 所以输出S前循环体的n的值为12,k的值为6, 即判断框内的不等式应为或 所以选C 【答案点睛】 本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题. 2、D 【答案解析】 利用一元二次不等式的解法和集合的交运算求解即可. 【题目详解】 由题意知,集合,, 由集合的交运算可得,. 故选:D 【答案点睛】 本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题. 3、B 【答案解析】 建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值. 【题目详解】 依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为. 故选:B 【答案点睛】 本小题主要考查异面直线所成的角的求法,属于中档题. 4、B 【答案解析】 根据题意,确定函数的性质,再判断哪一个图像具有这些性质. 由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B. 5、C 【答案解析】 直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值. 【题目详解】 设抛物线的准线为, 直线恒过定点, 如图过A、B分别作于M,于N, 由,则, 点B为AP的中点、连接OB,则, ∴,点B的横坐标为, ∴点B的坐标为,把代入直线, 解得, 故选:C. 【答案点睛】 本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题. 6、D 【答案解析】 根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解. 【题目详解】 设, 所以 , 因为当时,, 即, 所以,在上是增函数, 在中,因为,所以,, 因为,且, 所以, 即, 所以, 即 故选:D 【答案点睛】 本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题. 7、D 【答案解析】 试题分析:由已知可得有两个不等实根. 考点:1、余弦定理;2、函数的极值. 【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得. 8、B 【答案解析】 由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式. 【题目详解】 解:由图象知,,则, 图中的点应对应正弦曲线中的点, 所以,解得, 故函数表达式为. 故选:B. 【答案点睛】 本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题. 9、B 【答案解析】 先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可. 【题目详解】 由题意可知:, 所以,, 所以,所以, 又因为,所以, 所以. 故选:B. 【答案点睛】 本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键. 10、C 【答案解析】 由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角. 【题目详解】 连接,,如图: 又,则为异面直线与所成的角. 因为且三棱柱为直三棱柱,∴∴面, ∴, 又,,∴, ∴,解得. 故选C 【答案点睛】 考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题. 11、A 【答案解析】 作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可. 【题目详解】 作于,于. 因为平面平面,平面.故, 故平面.故二面角为. 又直线与平面所成角为,因为, 故.故,当且仅当重合时取等号. 又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号. 故. 故选:A 【答案点睛】 本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题. 12、B 【答案解析】 执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解. 【题目详解】 由题意,执行给定的程序框图,输入,可得: 第1次循环:; 第2次循环:; 第3次循环:; 第10次循环:, 此时满足判定条件,输出结果, 故选:B. 【答案点睛】 本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 根据均值不等式得到,,根据等号成立条件得到直线的倾斜角为,计算得到直线方程. 【题目详解】 由椭圆,可知,,,, , ,, (当且仅当,等号成立), ,,,, 直线的倾斜角为,直线的方程为. 故答案为:. 【答案点睛】 本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力. 14、 【答案解析】 根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值. 【题目详解】 解:由题意,设(1,0),(0,1), 则

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开