温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江西省
赣州市
赣州
中学
高考
数学
倒计时
模拟
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设为锐角,若,则的值为( )
A. B. C. D.
2.已知,则不等式的解集是( )
A. B. C. D.
3.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )
A. B. C. D.
4.已知三棱柱( )
A. B. C. D.
5.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为( )
A. B. C. D.
6.已知等差数列的前项和为,,,则( )
A.25 B.32 C.35 D.40
7.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
8.设,,,则、、的大小关系为( )
A. B. C. D.
9.给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;
③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
④垂直于同一直线的两条直线必平行.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
10.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )
A. B. C. D.
11.已知各项都为正的等差数列中,,若,,成等比数列,则( )
A. B. C. D.
12.若复数,,其中是虚数单位,则的最大值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若,则________.
14.设复数满足,则_________.
15.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.
16.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥中,平面,,,.
(I)证明:;
(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.
18.(12分)已知集合,.
(1)若,则;
(2)若,求实数的取值范围.
19.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.
(1)当时,求某个时间段需要检查污染源处理系统的概率;
(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.
20.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若,求实数的值.
21.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.
22.(10分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.
(1)证明:AP∥平面EBD;
(2)证明:BE⊥PC.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
用诱导公式和二倍角公式计算.
【题目详解】
.
故选:D.
【答案点睛】
本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.
2、A
【答案解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.
【题目详解】
构造函数,
是单调递增函数,且向左移动一个单位得到,
的定义域为,且,
所以为奇函数,图像关于原点对称,所以图像关于对称.
不等式等价于,
等价于,注意到,
结合图像关于对称和单调递增可知.
所以不等式的解集是.
故选:A
【答案点睛】
本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.
3、C
【答案解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.
【题目详解】
由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.
设.则.
故异面直线EF与BD所成角的余弦值为.
故选:C
【答案点睛】
本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.
4、C
【答案解析】
因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=
5、B
【答案解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.
【题目详解】
建立如图所示的平面直角坐标系,则D(0,0).
不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),
∴(-2,2)=λ(-2,1)+μ(1,2),
解得则.
故选:B
【答案点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
6、C
【答案解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.
【题目详解】
设等差数列的首项为,公差为,则
,解得,∴,即有.
故选:C.
【答案点睛】
本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.
7、C
【答案解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【题目详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
【答案点睛】
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
8、D
【答案解析】
因为,,
所以且在上单调递减,且
所以,所以,
又因为,,所以,
所以.
故选:D.
【答案点睛】
本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.
9、B
【答案解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.
【题目详解】
①中,空间四边形的四条线段不共面,故①错误.
②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.
③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么
这两个角相等或互补,故③错误.
④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.
故选:B
【答案点睛】
本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.
10、D
【答案解析】
根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.
【题目详解】
如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,
该几何体的体积为,
故选:D.
【答案点睛】
本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.
11、A
【答案解析】
试题分析:设公差为
或(舍),故选A.
考点:等差数列及其性质.
12、C
【答案解析】
由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.
【题目详解】
由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,
故选C
【答案点睛】
本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.
二、填空题:本题共4小题,每小题5分,共20分。
13、13
【答案解析】
由导函数的应用得:设,,
所以,,又,所以,即,
由二项式定理:令得:,再由,求出,从而得到的值;
【题目详解】
解:设,,
所以,,
又,所以,
即,
取得:,
又,
所以,
故,
故答案为:13
【答案点睛】
本题考查了导函数的应用、二项式定理,属于中档题
14、.
【答案解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.
【题目详解】
∵复数满足,
∴,∴,
故而可得,故答案为.
【答案点睛】
本题考查了复数的运算法则,共轭复数的概念,属于基础题.
15、
【答案解析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.
【题目详解】
解:直线,点,,
直线上存在点满足,
的轨迹方程是.
如图,直线与圆有公共点,
圆心到直线的距离:
,
解得.
实数的取值范围为.
故答案为:.
【答案点睛】
本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.
16、
【答案解析】
将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.
【题目详解】
如图所示,将正四面体补形成一个正方体,
则正四面体的外接球与正方体的外接球表示同一个球,
因为正四面体的棱长为1,所以正方体的棱长为,