分享
2023届江西省南康中学高考压轴卷数学试卷(含解析).doc
下载文档

ID:18402

大小:2.27MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 江西省 南康 中学 高考 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.用数学归纳法证明,则当时,左端应在的基础上加上( ) A. B. C. D. 2.用一个平面去截正方体,则截面不可能是( ) A.正三角形 B.正方形 C.正五边形 D.正六边形 3.已知集合,,,则集合( ) A. B. C. D. 4.设复数满足,在复平面内对应的点的坐标为则(  ) A. B. C. D. 5.双曲线的渐近线方程为( ) A. B. C. D. 6.已知,则下列不等式正确的是( ) A. B. C. D. 7.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( ) A. B. C. D. 8.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( ) A. B. C. D. 9.如图,圆的半径为,,是圆上的定点,,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( ) A. B. C. D. 10.设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 11.设集合,则 (  ) A. B. C. D. 12.以,为直径的圆的方程是 A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中,项的系数是__________. 14.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______. 15.已知数列是各项均为正数的等比数列,若,则的最小值为________. 16.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,三棱柱中,平面,,,分别为,的中点. (1)求证: 平面; (2)若平面平面,求直线与平面所成角的正弦值. 18.(12分)已知椭圆经过点,离心率为. (1)求椭圆的方程; (2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上. 19.(12分)已知数列满足且 (1)求数列的通项公式; (2)求数列的前项和. 20.(12分)已知函数(为实常数). (1)讨论函数在上的单调性; (2)若存在,使得成立,求实数的取值范围. 21.(12分)在中,角、、的对边分别为、、,且. (1)若,,求的值; (2)若,求的值. 22.(10分)已知函数 (1)求函数的单调递增区间 (2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 首先分析题目求用数学归纳法证明1+1+3+…+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案. 【题目详解】 当n=k时,等式左端=1+1+…+k1, 当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1. 故选:C. 【答案点睛】 本题主要考查数学归纳法,属于中档题./ 2、C 【答案解析】 试题分析:画出截面图形如图 显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C. 考点:平面的基本性质及推论. 3、D 【答案解析】 根据集合的混合运算,即可容易求得结果. 【题目详解】 ,故可得. 故选:D. 【答案点睛】 本题考查集合的混合运算,属基础题. 4、B 【答案解析】 根据共轭复数定义及复数模的求法,代入化简即可求解. 【题目详解】 在复平面内对应的点的坐标为,则, , ∵, 代入可得, 解得. 故选:B. 【答案点睛】 本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 5、C 【答案解析】 根据双曲线的标准方程,即可写出渐近线方程. 【题目详解】 双曲线, 双曲线的渐近线方程为, 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,属于容易题. 6、D 【答案解析】 利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项. 【题目详解】 已知,赋值法讨论的情况: (1)当时,令,,则,,排除B、C选项; (2)当时,令,,则,排除A选项. 故选:D. 【答案点睛】 比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题. 7、D 【答案解析】 由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围 【题目详解】 解:由题意方程的实数根叫做函数的“新驻点”, 对于函数,由于, , 设,该函数在为增函数, , , 在上有零点, 故函数的“新驻点”为,那么 故选:. 【答案点睛】 本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.. 8、A 【答案解析】 作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可. 【题目详解】 作于,于. 因为平面平面,平面.故, 故平面.故二面角为. 又直线与平面所成角为,因为, 故.故,当且仅当重合时取等号. 又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号. 故. 故选:A 【答案点睛】 本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题. 9、B 【答案解析】 根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解. 【题目详解】 由题意,当时,P与A重合,则与B重合, 所以,故排除C,D选项; 当时,,由图象可知选B. 故选:B 【答案点睛】 本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题. 10、B 【答案解析】 本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断. 【题目详解】 由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B. 【答案点睛】 面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误. 11、B 【答案解析】 直接进行集合的并集、交集的运算即可. 【题目详解】 解:; ∴. 故选:B. 【答案点睛】 本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题. 12、A 【答案解析】 设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程. 【题目详解】 设圆的标准方程为, 由题意得圆心为,的中点, 根据中点坐标公式可得,, 又,所以圆的标准方程为: ,化简整理得, 所以本题答案为A. 【答案点睛】 本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、240 【答案解析】 利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可. 【题目详解】 由题意得:,只需,可得, 代回原式可得, 故答案:240. 【答案点睛】 本题主要考查二项式展开式的通项公式及简单应用,相对不难. 14、 【答案解析】 试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是. 考点:向量的运算,基本不等式. 【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案. 15、40 【答案解析】 设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案. 【题目详解】 设等比数列的公比为, , , 等比数列的各项为正数, , ,当且仅当, 即时,取得最小值. 故答案为:. 【答案点睛】 本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题. 16、 【答案解析】 根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程. 【题目详解】 ,, 和的中点坐标为,且在线段的垂直平分线上, ,即,同理可得:, ,, 点的轨迹方程为. 故答案为:. 【答案点睛】 本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)详见解析;(2). 【答案解析】 (1)连接,,则且为的中点, 又∵为的中点,∴, 又平面,平面, 故平面. (2)由平面,得,. 以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系, 设, 则,,, ,,. 取平面的一个法向量为, 由,得: ,令,得 同理可得平面的一个法向量为 ∵平面平面,∴ 解得,得,又, 设直线与平面所成角为,则 . 所以,直线与平面所成角的正弦值是. 18、(1);(2)见解析. 【答案解析】 (1)根据题意得出关于、、的方程组,解出、的值,进而可得出椭圆的标准方程; (2)设点、、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论. 【题目详解】 (1)由题意得,解得,. 所以椭圆的方程是; (2)设直线的方程为,、、, 由,得. ,则有,, 由,得,由,可得, , , 综上,点在定直线上. 【答案点睛】 本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题. 19、(1);(2) 【答案解析】 (1)根据已知可得数列为等

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开