温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
辅仁
高级中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知为等腰直角三角形,,,为所在平面内一点,且,则( )
A. B. C. D.
2.已知满足,,,则在上的投影为( )
A. B. C. D.2
3.已知向量,,则向量在向量上的投影是( )
A. B. C. D.
4.若复数()是纯虚数,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为( )
A.8 B.16 C. D.
6.已知,若方程有唯一解,则实数的取值范围是( )
A. B.
C. D.
7.如图是一个算法流程图,则输出的结果是( )
A. B. C. D.
8.已知函数,,且在上是单调函数,则下列说法正确的是( )
A. B.
C.函数在上单调递减 D.函数的图像关于点对称
9.已知双曲线的一条渐近线倾斜角为,则( )
A.3 B. C. D.
10.若函数在处有极值,则在区间上的最大值为( )
A. B.2 C.1 D.3
11.已知实数、满足约束条件,则的最大值为( )
A. B. C. D.
12.已知复数,其中,,是虚数单位,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.
14.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.
15.若函数,则的值为______.
16.已知x,y满足约束条件,则的最小值为___
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.
(1)求证:;
(2)求二面角的大小.
18.(12分)已知函数,其中.
(1)①求函数的单调区间;
②若满足,且.求证: .
(2)函数.若对任意,都有,求的最大值.
19.(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为、、、、、、、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.
举例说明.
某同学化学学科原始分为65分,该学科等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属等级.而等级的转换分区间为61~70,那么该同学化学学科的转换分为:
设该同学化学科的转换等级分为,,求得.
四舍五入后该同学化学学科赋分成绩为67.
(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.
(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为82~93,求小明转换后的物理成绩;
(ii)求物理原始分在区间的人数;
(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.
(附:若随机变量,则,,)
20.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:
用户分类
预计升级到的时段
人数
早期体验用户
2019年8月至2019年12月
270人
中期跟随用户
2020年1月至2021年12月
530人
后期用户
2023年1月及以后
200人
我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).
(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;
(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;
(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
21.(12分)已知不等式的解集为.
(1)求实数的值;
(2)已知存在实数使得恒成立,求实数的最大值.
22.(10分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.
(1)若,求直线与轴的交点坐标;
(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.
【题目详解】
如图建系,则,,,
由,易得,则.
故选:D
【答案点睛】
本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
2、A
【答案解析】
根据向量投影的定义,即可求解.
【题目详解】
在上的投影为.
故选:A
【答案点睛】
本题考查向量的投影,属于基础题.
3、A
【答案解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解
【题目详解】
由于向量,
故
向量在向量上的投影是.
故选:A
【答案点睛】
本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.
4、B
【答案解析】
化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.
【题目详解】
是纯虚数,则,,
,对应点为,在第二象限.
故选:B.
【答案点睛】
本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.
5、D
【答案解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.
【题目详解】
根据题意,画出几何关系如下图所示:
设四边形的内切圆半径为,双曲线半焦距为,
则
所以,
四边形的内切圆面积为,
则,解得,
则,
即
故由基本不等式可得,即,
当且仅当时等号成立.
故焦距的最小值为.
故选:D
【答案点睛】
本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.
6、B
【答案解析】
求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.
【题目详解】
解:令,则,
则,
故,如图示:
由,
得,
函数恒过,,
由,,
可得,,,
若方程有唯一解,
则或,即或;
当即图象相切时,
根据,,
解得舍去),
则的范围是,
故选:.
【答案点睛】
本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.
7、A
【答案解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.
【题目详解】
由题意,执行上述的程序框图:
第1次循环:满足判断条件,;
第2次循环:满足判断条件,;
第3次循环:满足判断条件,;
不满足判断条件,输出计算结果,
故选A.
【答案点睛】
本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.
8、B
【答案解析】
根据函数,在上是单调函数,确定 ,然后一一验证,
A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.
【题目详解】
因为函数,在上是单调函数,
所以 ,即,所以 ,
若,则,又因为,即,解得, 而,故A错误.
由,不妨令 ,得
由,得 或
当时,,不合题意.
当时,,此时
所以,故B正确.
因为,函数,在上是单调递增,故C错误.
,故D错误.
故选:B
【答案点睛】
本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.
9、D
【答案解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.
【题目详解】
由双曲线方程可知:,渐近线方程为:,
一条渐近线的倾斜角为,,解得:.
故选:.
【答案点睛】
本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.
10、B
【答案解析】
根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.
【题目详解】
解:由已知得,,,经检验满足题意.
,.
由得;由得或.
所以函数在上递增,在上递减,在上递增.
则,,
由于,所以在区间上的最大值为2.
故选:B.
【答案点睛】
本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.
11、C
【答案解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.
【题目详解】
解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:
当目标函数经过点时,取得最大值,最大值为.
故选:C.
【答案点睛】
本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.
12、D
【答案解析】
试题分析:由,得,则,故选D.
考点:1、复数的运算;2、复数的模.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.
【题目详解】
设
,
交圆于点,所以
易知:
即.
故答案为:
【答案点睛】
此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.
14、