温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山东省
菏泽市
部分
重点
学校
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的图象的大致形状是( )
A. B. C. D.
2.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )
A. B. C. D.
3.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是( )
A. B.
C. D.
4.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为( )
A. B. C. D.
5.已知满足,,,则在上的投影为( )
A. B. C. D.2
6.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )
A.深圳的变化幅度最小,北京的平均价格最高
B.天津的往返机票平均价格变化最大
C.上海和广州的往返机票平均价格基本相当
D.相比于上一年同期,其中四个城市的往返机票平均价格在增加
7.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.
A. B. C. D.
8.两圆和相外切,且,则的最大值为( )
A. B.9 C. D.1
9.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )
A.8 B.9 C.10 D.11
10.已知.给出下列判断:
①若,且,则;
②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;
③若在上恰有7个零点,则的取值范围为;
④若在上单调递增,则的取值范围为.
其中,判断正确的个数为( )
A.1 B.2 C.3 D.4
11.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为( )
A. B. C. D.
12.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.
14.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.
15.二项式的展开式的各项系数之和为_____,含项的系数为_____.
16.若方程有两个不等实根,则实数的取值范围是_____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
18.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.
19.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.
(1)写出曲线的极坐标方程与直线的参数方程;
(2)若直线与曲线相交于,两点,且,求实数的值.
20.(12分)正项数列的前n项和Sn满足:
(1)求数列的通项公式;
(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn< .
21.(12分)已知函数
(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;
(2)若函数,则当,时,求证:
①;
②.
22.(10分)已知函数.其中是自然对数的底数.
(1)求函数在点处的切线方程;
(2)若不等式对任意的恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.
【题目详解】
函数
易知为奇函数,故排除D.
又,易知当时,;
又当时,,
故在上单调递增,所以,
综上,时,,即单调递增.
又为奇函数,所以在上单调递增,故排除A,C.
故选:B
【答案点睛】
本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.
2、B
【答案解析】
作出图形,设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.
【题目详解】
如下图所示:
设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,
四边形为正方形,、分别为、的中点,则且,
四边形为平行四边形,且,
且,且,则四边形为平行四边形,
,平面,则存在直线平面,使得,
若平面,则平面,又平面,则平面,
此时,平面为平面,直线不可能与平面平行,
所以,平面,,平面,
平面,平面平面,,
,所以,四边形为平行四边形,可得,
为的中点,同理可证为的中点,,,因此,.
故选:B.
【答案点睛】
本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.
3、C
【答案解析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.
【题目详解】
设函数,,
因为,
所以,
或,
因为 时,,
或时,,,其图象如下:
当时,至多一个整数根;
当时,在内的解集中仅有三个整数,只需,
,
所以.
故选:C.
【答案点睛】
本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.
4、A
【答案解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.
【题目详解】
结合题意,绘制图像
要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.
【答案点睛】
本道题考查了抛物线的基本性质,难度中等.
5、A
【答案解析】
根据向量投影的定义,即可求解.
【题目详解】
在上的投影为.
故选:A
【答案点睛】
本题考查向量的投影,属于基础题.
6、D
【答案解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.
【题目详解】
对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.
对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.
对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.
对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.
故选:D
【答案点睛】
本小题主要考查根据条形图和折线图进行数据分析,属于基础题.
7、B
【答案解析】
如图,已知,,
∴,解得 ,
∴,解得 .
∴折断后的竹干高为4.55尺
故选B.
8、A
【答案解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.
【题目详解】
因为两圆和相外切
所以,即
当时,取最大值
故选:A
【答案点睛】
本题主要考查了由圆与圆的位置关系求参数,属于中档题.
9、B
【答案解析】
根据题意计算,,,解不等式得到答案.
【题目详解】
∵是以1为首项,2为公差的等差数列,∴.
∵是以1为首项,2为公比的等比数列,∴.
∴
.
∵,∴,解得.则当时,的最大值是9.
故选:.
【答案点睛】
本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.
10、B
【答案解析】
对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.
【题目详解】
因为,所以周期.
对于①,因为,所以,即,故①错误;
对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;
对于③,令,可得,则,
因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,
所以,即,解得,故③正确;
对于④,因为,且,所以,解得,又,所以,故④正确.
故选:B.
【答案点睛】
本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.
11、C
【答案解析】
由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.
【题目详解】
由双曲线与双曲线有相同的渐近线,
可得,解得,此时双曲线,
则曲线的离心率为,故选C.
【答案点睛】
本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.
12、B
【答案解析】
利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.
【题目详解】
20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.
故选:B.
【答案点睛】
本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程
【题目详解】
设直线.
由题设得,故,
由题设可得.
由可得,