温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
常州市
教育
学会
学业
水平
监测
高考
适应性
考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )
A. B.
C. D.
2.命题“”的否定是( )
A. B.
C. D.
3.已知是虚数单位,若,则( )
A. B.2 C. D.3
4.已知函数满足=1,则等于( )
A.- B. C.- D.
5.若复数满足,则的虚部为( )
A.5 B. C. D.-5
6.设,,则( )
A. B. C. D.
7.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )
A. B. C. D.
8.已知正四面体外接球的体积为,则这个四面体的表面积为( )
A. B. C. D.
9.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为( )
变量x
0
1
2
3
变量y
3
5.5
7
A.0.9 B.0.85 C.0.75 D.0.5
10.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )
A. B. C. D.
11.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )
A. B. C. D.
12.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )
A. B. C.16 D.32
二、填空题:本题共4小题,每小题5分,共20分。
13.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
14.已知,,,且,则的最小值为___________.
15.若实数满足约束条件,设的最大值与最小值分别为,则_____.
16.已知x,y满足约束条件,则的最小值为___
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知命题:,;命题:函数无零点.
(1)若为假,求实数的取值范围;
(2)若为假,为真,求实数的取值范围.
18.(12分)已知椭圆:()的左、右焦点分别为和,右顶点为,且,短轴长为.
(1)求椭圆的方程;
(2)若过点作垂直轴的直线,点为直线上纵坐标不为零的任意一点,过作的垂线交椭圆于点和,当时,求此时四边形的面积.
19.(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,
(1)求的取值范围;
(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.
20.(12分)已知.
(1)求不等式的解集;
(2)若存在,使得成立,求实数的取值范围
21.(12分)设函数,,其中,为正实数.
(1)若的图象总在函数的图象的下方,求实数的取值范围;
(2)设,证明:对任意,都有.
22.(10分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.
(1)求椭圆的标准方程;
(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.
【题目详解】
根据题意,,所以点的坐标为,
又 ,
所以.
故选:A.
【答案点睛】
本题考查指数函数过定点问题和函数对称性的应用,属于基础题.
2、D
【答案解析】
根据全称命题的否定是特称命题,对命题进行改写即可.
【题目详解】
全称命题的否定是特称命题,所以命题“,”的否定是:,.
故选D.
【答案点睛】
本题考查全称命题的否定,难度容易.
3、A
【答案解析】
直接将两边同时乘以求出复数,再求其模即可.
【题目详解】
解:将两边同时乘以,得
故选:A
【答案点睛】
考查复数的运算及其模的求法,是基础题.
4、C
【答案解析】
设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.
【题目详解】
解:设的最小正周期为,因为,
所以,所以,
所以,
又,所以当时,,
,因为
,
整理得,因为,
,
,则
所以
.
故选:C.
【答案点睛】
本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.
5、C
【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.
【题目详解】
由(1+i)z=|3+4i|,
得z,
∴z的虚部为.
故选C.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.
6、D
【答案解析】
集合是一次不等式的解集,分别求出再求交集即可
【题目详解】
,
,
则
故选
【答案点睛】
本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.
7、D
【答案解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.
【题目详解】
由已知得,则.
因为,数列是单调递增数列,
所以,则,
化简得,所以.
故选:D.
【答案点睛】
本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.
8、B
【答案解析】
设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.
【题目详解】
将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,
设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴ .而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.
故选:B.
【答案点睛】
本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.
9、A
【答案解析】
计算,代入回归方程可得.
【题目详解】
由题意,,
∴,解得.
故选:A.
【答案点睛】
本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.
10、D
【答案解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;
当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;
【题目详解】
函数在内都有两个不同的零点,
等价于方程在内都有两个不同的根.
,所以当时,,是增函数;
当时,,是减函数.因此.
设,,
若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.
设其解为,当时,在上是增函数;
当时,在上是减函数.
因为,方程在内有两个不同的根,
所以,且.由,即,解得.
由,即,所以.
因为,所以,代入,得.
设,,所以在上是增函数,
而,由可得,得.
由在上是增函数,得.
综上所述,
故选:D.
【答案点睛】
本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题
11、A
【答案解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.
【题目详解】
中,,
由正弦定理可得,整理得,
由余弦定理,得.
D是AB的中点,且,
,即,
即,
,当且仅当时,等号成立.
的面积,
所以面积的最大值为.
故选:.
【答案点睛】
本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.
12、A
【答案解析】
几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.
二、填空题:本题共4小题,每小题5分,共20分。
13、 (1,)
【答案解析】
在定义域[m,n]上的值域是[m2,n2],等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.
【题目详解】
由题意知:与的图像在(1,)上恰有两个交点
考查临界情形:与切于,
.
故答案为:.
【答案点睛】
本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.
14、
【答案解析】
由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.
【题目详解】
解:因为,,,且,
所以
因为,所以
,
当且仅当时,取等号,
所以
令,则,
令,则,
所以函数在上单调递增,
所以
所以
则所求最小值为
故答案为:
【答案点睛】
此题考查基本不等式的运用:求最值,注意变形和满足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.
15、
【答案解析】
画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.
【题目详解】
画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.
【答案点睛】
本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值