分享
2023届江苏省南通市如东县高考冲刺数学模拟试题(含解析).doc
下载文档

ID:18347

大小:2.21MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 江苏省 南通市 如东县 高考 冲刺 数学模拟 试题 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.不等式组表示的平面区域为,则( ) A., B., C., D., 2.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( ) A. B. C. D. 3.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则( ) A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣12 4.在中,,,,则边上的高为( ) A. B.2 C. D. 5.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( ) A. B. C. D. 6.已知函数()的最小值为0,则( ) A. B. C. D. 7.已知命题,且是的必要不充分条件,则实数的取值范围为( ) A. B. C. D. 8.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题: ①若,,,则; ②若,,,则; ③若,,,则; ④若,,,,则.其中正确的是( ) A.①② B.②③ C.②④ D.③④ 9.已知集合,则为( ) A.[0,2) B.(2,3] C.[2,3] D.(0,2] 10.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( ) A. B. C. D. 11.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为( ) A. B. C. D. 12.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答). 14.如图,在平行四边形中,,,则的值为_____. 15.设定义域为的函数满足,则不等式的解集为__________. 16.点到直线的距离为________ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为. (Ⅰ)求椭圆E的方程; (Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值. 18.(12分)已知抛物线与直线. (1)求抛物线C上的点到直线l距离的最小值; (2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标. 19.(12分)记数列的前项和为,已知成等差数列. (1)证明:数列是等比数列,并求的通项公式; (2)记数列的前项和为,求. 20.(12分)已知函数(). (1)讨论的单调性; (2)若对,恒成立,求的取值范围. 21.(12分)如图,在中,点在上,,,. (1)求的值; (2)若,求的长. 22.(10分)已知函数. (1)若曲线在处的切线为,试求实数,的值; (2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案. 【题目详解】 解:根据题意,不等式组其表示的平面区域如图所示, 其中 ,, 设,则,的几何意义为直线在轴上的截距的2倍, 由图可得:当过点时,直线在轴上的截距最大,即, 当过点原点时,直线在轴上的截距最小,即, 故AB错误; 设,则的几何意义为点与点连线的斜率, 由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确; 故选:D. 【答案点睛】 本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题. 2、A 【答案解析】 由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案. 【题目详解】 根据题意,的图象与直线的相邻交点间的距离为, 所以 的周期为, 则, 所以, 由正弦函数和正切函数图象可知正确. 故选:A. 【答案点睛】 本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 3、D 【答案解析】 分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果. 【题目详解】 设, 联立 则, 因为直线经过C的焦点, 所以. 同理可得, 所以 故选:D. 【答案点睛】 本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。 4、C 【答案解析】 结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高. 【题目详解】 过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为. 故选:C 【答案点睛】 本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题. 5、A 【答案解析】 建立平面直角坐标系,求出直线, 设出点,通过,找出与的关系. 通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围. 【题目详解】 以D为原点,BC所在直线为轴,AD所在直线为轴建系, 设,则直线 , 设点, 所以 由得 ,即 , 所以, 由及,解得,由二次函数的图像知,,所以的取值范围是.故选A. 【答案点睛】 本题主要考查解析法在向量中的应用,以及转化与化归思想的运用. 6、C 【答案解析】 设,计算可得,再结合图像即可求出答案. 【题目详解】 设,则, 则, 由于函数的最小值为0,作出函数的大致图像, 结合图像,,得, 所以. 故选:C 【答案点睛】 本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题. 7、D 【答案解析】 求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解. 【题目详解】 解:命题,即: , 是的必要不充分条件, , ,解得.实数的取值范围为. 故选:. 【答案点睛】 本题考查根据充分、必要条件求参数范围,其思路方法: (1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解. (2)求解参数的取值范围时, 一定要注意区间端点值的检验. 8、C 【答案解析】 根据线面平行或垂直的有关定理逐一判断即可. 【题目详解】 解:①:、也可能相交或异面,故①错 ②:因为,,所以或, 因为,所以,故②对 ③:或,故③错 ④:如图 因为,,在内过点作直线的垂线, 则直线, 又因为,设经过和相交的平面与交于直线,则 又,所以 因为,, 所以,所以,故④对. 故选:C 【答案点睛】 考查线面平行或垂直的判断,基础题. 9、B 【答案解析】 先求出,得到,再结合集合交集的运算,即可求解. 【题目详解】 由题意,集合, 所以,则, 所以. 故选:B. 【答案点睛】 本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题. 10、A 【答案解析】 由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解. 【题目详解】 解:由抛物线,可得,则,故其准线方程为, 抛物线的准线过双曲线的左焦点, . 抛物线的准线被双曲线截得的线段长为, ,又, , 则双曲线的离心率为. 故选:. 【答案点睛】 本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长. 11、B 【答案解析】 首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解. 【题目详解】 由题意将代入双曲线的方程,得则,由,得的周长为 , 设的内切圆的半径为,则, 故选:B 【答案点睛】 本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题. 12、D 【答案解析】 先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项. 【题目详解】 因为函数的最小正周期是,所以,即,所以, 的图象向左平移个单位长度后得到的函数解析式为, 由于其图象关于轴对称,所以,又,所以,所以, 所以, 因为的递增区间是:,, 由,,得:,, 所以函数的单调递增区间为(). 故选:D. 【答案点睛】 本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、135 【答案解析】 根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案. 【题目详解】 根据题意先确定2个人位置不变,共有种选择. 再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择, 故不同的坐法有. 故答案为:. 【答案点睛】 本题考查了分步乘法原理,意在考查学生的计算能力和应用能力. 14、 【答案解析】 根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值. 【题目详解】 ∵AB=2,AD=1, ∴ =1﹣4 =﹣1. 故答案为:﹣1. 【答案点睛】 本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题. 15、 【答案解析】 根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论. 【题目详解】 设F(x), 则F′(x), ∵, ∴F′(x)>0,即函数F(x)在定义域上单调递增. ∵ ∴,即F(x)<F(2x) ∴,即x>1 ∴不等式的解为 故答案为: 【答案点睛】 本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键. 16、2 【答案解析】 直接根据点到直线的距离公式即可求出。 【题目详解】 依据点到直线的距离公式,点到直线的距离为。 【答案点睛】 本题主要考查点到直线的距离公式的应用。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(Ⅰ);(Ⅱ)4. 【答案解析】 (Ⅰ) 结合已知可得,求出a,b的值,即可得椭圆方程

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开