温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
黑龙江省
示范性
高中
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则( )
A.9 B.5 C.2或9 D.1或5
2.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )
A. B.1 C. D.
3.已知非零向量,满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:
4.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为( )
A. B. C. D.
5.若直线经过抛物线的焦点,则( )
A. B. C.2 D.
6.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A. B. C. D.
7.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为( )
A. B. C.4 D.2
8.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:
甲:我走红门盘道徒步线路,乙走桃花峪登山线路;
乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;
丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;
事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )
A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路
C.丙走桃花峪登山线路 D.甲走天烛峰登山线路
9.函数y=sin2x的图象可能是
A. B.
C. D.
10.如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为( )
A. B. C. D.
11.函数的大致图象是( )
A. B.
C. D.
12.函数的大致图象为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知以x±2y =0为渐近线的双曲线经过点,则该双曲线的标准方程为________.
14.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.
15.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).
16.设函数,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知的图象在处的切线方程为.
(1)求常数的值;
(2)若方程在区间上有两个不同的实根,求实数的值.
18.(12分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:
(1)求;
(2)设为边上一点,且,求的面积.
19.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.
(1)求线段的长.
(2)若为线段上一点,且,求二面角的余弦值.
20.(12分)设函数.
(1)若,求函数的值域;
(2)设为的三个内角,若,求的值;
21.(12分)设函数,直线与函数图象相邻两交点的距离为.
(Ⅰ)求的值;
(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.
22.(10分)已知函数(mR)的导函数为.
(1)若函数存在极值,求m的取值范围;
(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据渐近线方程求得,再利用双曲线定义即可求得.
【题目详解】
由于,所以,
又且,
故选:B.
【答案点睛】
本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.
2、D
【答案解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.
【题目详解】
将抛物线放入坐标系,如图所示,
∵,,,
∴,设抛物线,代入点,
可得
∴焦点为,
即焦点为中点,设焦点为,
,,∴.
故选:D
【答案点睛】
本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.
3、C
【答案解析】
根据向量的数量积运算,由向量的关系,可得选项.
【题目详解】
,
,∴等价于,
故选:C.
【答案点睛】
本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.
4、B
【答案解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.
【题目详解】
由题意将代入双曲线的方程,得则,由,得的周长为
,
设的内切圆的半径为,则,
故选:B
【答案点睛】
本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.
5、B
【答案解析】
计算抛物线的交点为,代入计算得到答案.
【题目详解】
可化为,焦点坐标为,故.
故选:.
【答案点睛】
本题考查了抛物线的焦点,属于简单题.
6、A
【答案解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,
且俯视图应为对称图形
故俯视图为
故选A.
点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
7、D
【答案解析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.
【题目详解】
解:设,,,
∵,
∴,即,①
又,②,
由①②可得,
∵,
∴,
∴,
∴,
即,
故选:D.
【答案点睛】
本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.
8、D
【答案解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.
【题目详解】
若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.
故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.
综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路
故选:D
【答案点睛】
本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.
9、D
【答案解析】
分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.
详解:令,
因为,所以为奇函数,排除选项A,B;
因为时,,所以排除选项C,选D.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.
10、C
【答案解析】
把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.
【题目详解】
如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.
正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,
显然关于直线的对称点为,
,当且仅当共线时取等号,∴所求最小值为.
故选:C.
【答案点睛】
本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.
11、A
【答案解析】
用排除B,C;用排除;可得正确答案.
【题目详解】
解:当时,,,
所以,故可排除B,C;
当时,,故可排除D.
故选:A.
【答案点睛】
本题考查了函数图象,属基础题.
12、A
【答案解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.
【题目详解】
,排除掉C,D;
,
,,
.
故选:A.
【答案点睛】
本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设双曲线方程为,代入点,计算得到答案.
【题目详解】
双曲线渐近线为,则设双曲线方程为:,代入点,则.
故双曲线方程为:.
故答案为:.
【答案点睛】
本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.
14、
【答案解析】
如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.
15、135
【答案解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.
【题目详解】
根据题意先确定2个人位置不变,共有种选择.
再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,
故不同的坐法有.
故答案为:.
【答案点睛】
本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.
16、
【答案解析】
由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.
【题目详解】
因为函数,则
因为,则
故
故答案为:
【答案点睛】
本题考查分段函数求值,属于简单题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)或.
【答案解析】
(1)求出,由,建立方程求解,即可求出结论;
(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.
【题目详解】
(1),由题意知
,
解得(舍去)或.
(2)当时,
故方程有根,根为或,
+
0
-
0
+
极大值
极小值
由表可见,当时,有极小值0.
由上表可知的减函数区间为,
递增区间为,.
因为,
.由数形