温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
天津市
滨海新区
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题,,则是( )
A., B.,.
C., D.,.
2.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )
A. B. C. D.
3.设为锐角,若,则的值为( )
A. B. C. D.
4.若,则的虚部是( )
A. B. C. D.
5.已知等差数列满足,公差,且成等比数列,则
A.1 B.2 C.3 D.4
6.已知函数在上有两个零点,则的取值范围是( )
A. B. C. D.
7.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )
A. B. C. D.
8.如果直线与圆相交,则点与圆C的位置关系是( )
A.点M在圆C上 B.点M在圆C外
C.点M在圆C内 D.上述三种情况都有可能
9.已知集合,则=
A. B. C. D.
10.已知双曲线的一条渐近线倾斜角为,则( )
A.3 B. C. D.
11.已知复数z,则复数z的虚部为( )
A. B. C.i D.i
12.椭圆的焦点为,点在椭圆上,若,则的大小为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.
14.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.
15.在中,,是的角平分线,设,则实数的取值范围是__________.
16.已知实数,满足,则目标函数的最小值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.
(1)求证:平面;
(2)设,若直线与平面所成的角为,求二面角的正弦值.
18.(12分)已知函数.
(1)求不等式的解集;
(2)若对任意恒成立,求的取值范围.
19.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.
(1)求曲线,的直角坐标方程;
(2)若点A,B为曲线上的两个点且,求的值.
20.(12分)已知函数.
(1)讨论的单调性;
(2)若,设,证明:,,使.
21.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.
(1)若a,且a≠0,证明:函数有局部对称点;
(2)若函数在定义域内有局部对称点,求实数c的取值范围;
(3)若函数在R上有局部对称点,求实数m的取值范围.
22.(10分)设函数.
(1)若,求实数的取值范围;
(2)证明:,恒成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据全称命题的否定为特称命题,得到结果.
【题目详解】
根据全称命题的否定为特称命题,可得,
本题正确选项:
【答案点睛】
本题考查含量词的命题的否定,属于基础题.
2、D
【答案解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.
【题目详解】
双曲线与互为共轭双曲线,
四个顶点的坐标为,四个焦点的坐标为,
四个顶点形成的四边形的面积,
四个焦点连线形成的四边形的面积,
所以,
当取得最大值时有,,离心率,
故选:D.
【答案点睛】
该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.
3、D
【答案解析】
用诱导公式和二倍角公式计算.
【题目详解】
.
故选:D.
【答案点睛】
本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.
4、D
【答案解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.
【题目详解】
由题可知,
所以的虚部是1.
故选:D.
【答案点睛】
本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.
5、D
【答案解析】
先用公差表示出,结合等比数列求出.
【题目详解】
,因为成等比数列,所以,解得.
【答案点睛】
本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.
6、C
【答案解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.
【题目详解】
∵ ,.
当时,,在上单调递增,不合题意.
当时,,在上单调递减,也不合题意.
当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.
综上,的取值范围是.
故选C.
【答案点睛】
本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.
7、B
【答案解析】
设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.
8、B
【答案解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.
【题目详解】
直线与圆相交,
圆心到直线的距离,
即.
也就是点到圆的圆心的距离大于半径.
即点与圆的位置关系是点在圆外.
故选:
【答案点睛】
本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.
9、C
【答案解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【题目详解】
由题意得,,则
.故选C.
【答案点睛】
不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
10、D
【答案解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.
【题目详解】
由双曲线方程可知:,渐近线方程为:,
一条渐近线的倾斜角为,,解得:.
故选:.
【答案点睛】
本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.
11、B
【答案解析】
利用复数的运算法则、虚部的定义即可得出
【题目详解】
,
则复数z的虚部为.
故选:B.
【答案点睛】
本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.
12、C
【答案解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.
【题目详解】
由题意,,,又,则,
由余弦定理可得.
故.
故选:C.
【答案点睛】
本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、.
【答案解析】
先求圆的半径, 四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.
【题目详解】
由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.
【答案点睛】
本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.
14、1
【答案解析】
由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.
【题目详解】
如图,作,交于,,
由题意得正三棱柱底面边长,高为,
所得正三棱柱的体积为:
.
故答案为:1.
【答案点睛】
本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.
15、
【答案解析】
设,,,由,用面积公式表示面积可得到,利用,即得解.
【题目详解】
设,,,
由得:
,
化简得,
由于,
故.
故答案为:
【答案点睛】
本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.
16、-1
【答案解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
【题目详解】
作出实数x,y满足对应的平面区域如图阴影所示;
由z=x+2y﹣1,得yx,
平移直线yx,由图象可知当直线yx经过点A时,
直线yx的纵截距最小,此时z最小.
由,得A(﹣1,﹣1),
此时z的最小值为z=﹣1﹣2﹣1=﹣1,
故答案为﹣1.
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2).
【答案解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.
【题目详解】
(1)证明:∵四边形是菱形,
,
平面
平面,
又是的中点,
,
又
平面
(2)
∴直线与平面所成的角等于直线与平面所成的角.
平面,
∴直线与平面所成的角为,即.
因为,则在等腰直角三角形中,
所以.
在中,由得,
以为原点,分别以为轴建立空间直角坐标系.
则
所以
设平面的一个法向量为,
则,可得,
取平面的一个法向量为,
则,
所以二面角的正弦值的大小为.
(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)
【答案点睛】
本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.
18、 (1);(2).
【答案解析】
(1)通过讨论的范围,分为,,三种情形,分别求出不等式的解集即可;
(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.
【题目详解】
(1)当时,原不等式等价于,解得,所以,
当时,原不等式等价于,解得,所以此时不等式无解,
当时,原不等式等价于,解得,所以
综上所述,不等式解集为.
(2)由,得,
当时,恒成立,所以;
当时,.
因为
当且仅当即或时,等号成立,
所以;
综上的取值范围是.
【答案点睛】
本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.
19、(1)..(2)
【答案解析】
(1)先求解a,b,消去参数,即得曲