温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
四川省
宜宾县
第二
中学
高考
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )
A. B.
C. D.
2.设集合(为实数集),,,则( )
A. B. C. D.
3. “”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
4.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )
A. B. C. D.
5.已知函数的图象如图所示,则可以为( )
A. B. C. D.
6.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是( )
A. B. C. D.
7.已知中,,则( )
A.1 B. C. D.
8.已知集合,集合,那么等于( )
A. B. C. D.
9.设数列是等差数列,,.则这个数列的前7项和等于( )
A.12 B.21 C.24 D.36
10.在中,角的对边分别为,若,则的形状为( )
A.直角三角形 B.等腰非等边三角形
C.等腰或直角三角形 D.钝角三角形
11.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )
A. B.2 C. D.
12.在中,,,分别为角,,的对边,若的面为,且,则( )
A.1 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图所示,平面BCC1B1⊥平面ABC,ÐABC=120°,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.
14.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:
①的值域为;
②;
③;
④
其中正确的结论是_______(写出所有正确的结论的序号)
15.曲线y=e-5x+2在点(0,3)处的切线方程为________.
16.已知实数,满足约束条件,则的最小值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,().
(1)若曲线在点处的切线方程为,求实数a、m的值;
(2)若对任意恒成立,求实数a的取值范围;
(3)关于x的方程能否有三个不同的实根?证明你的结论.
18.(12分)中的内角,,的对边分别是,,,若,.
(1)求;
(2)若,点为边上一点,且,求的面积.
19.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.
(1)求曲线C的普通方程;
(2)求曲线l和曲线C的公共点的极坐标.
20.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.
(1)求椭圆C的标准方程;
(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.
21.(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).
(1)若直线过点,,求的方程;
(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.
22.(10分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.
(1)求△ABC的面积;
(2)若D,E是BC边上的三等分点,求.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.
【题目详解】
由条件可得
函数关于直线对称;
在,上单调递增,且在时使得;
又
,,所以选项成立;
,比离对称轴远,
可得,选项成立;
,,可知比离对称轴远
,选项成立;
,符号不定,,无法比较大小,
不一定成立.
故选:.
【答案点睛】
本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.
2、A
【答案解析】
根据集合交集与补集运算,即可求得.
【题目详解】
集合,,
所以
所以
故选:A
【答案点睛】
本题考查了集合交集与补集的混合运算,属于基础题.
3、A
【答案解析】
首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;
【题目详解】
解:∵,∴可解得或,
∴“”是“”的充分不必要条件.
故选:A
【答案点睛】
本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.
4、D
【答案解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.
【题目详解】
设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:
,因此双曲线的渐近线方程为:
.
故选:D
【答案点睛】
本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.
5、A
【答案解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.
【题目详解】
首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;
其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.
故选:A.
【答案点睛】
本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.
6、A
【答案解析】
双曲线﹣=1的渐近线方程为y=x,
不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),
与y=﹣x联立,可得交点M(,﹣),
∵点M在以线段F1F1为直径的圆外,
∴|OM|>|OF1|,即有+>c1,
∴>3,即b1>3a1,
∴c1﹣a1>3a1,即c>1a.
则e=>1.
∴双曲线离心率的取值范围是(1,+∞).
故选:A.
点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.
7、C
【答案解析】
以为基底,将用基底表示,根据向量数量积的运算律,即可求解.
【题目详解】
,
,
.
故选:C.
【答案点睛】
本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.
8、A
【答案解析】
求出集合,然后进行并集的运算即可.
【题目详解】
∵,,
∴.
故选:A.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.
9、B
【答案解析】
根据等差数列的性质可得,由等差数列求和公式可得结果.
【题目详解】
因为数列是等差数列,,
所以,即,
又,
所以,,
故
故选:B
【答案点睛】
本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.
10、C
【答案解析】
利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;
【题目详解】
解:因为
所以
所以
所以
所以
所以
当时,为直角三角形;
当时即,为等腰三角形;
的形状是等腰三角形或直角三角形
故选:.
【答案点睛】
本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.
11、D
【答案解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.
【题目详解】
解:在复平面内所对应的点在虚轴上,
,即.
故选D.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
12、D
【答案解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.
【题目详解】
解:由,
得,
∵ ,
∴ ,
即
即,
则,
∵ ,
∴ ,
∴ ,即,
则,
故选D.
【答案点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
将平移到和相交的位置,解三角形求得线线角的余弦值.
【题目详解】
过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.
【答案点睛】
本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.
14、②
【答案解析】
根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.
【题目详解】
对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;
对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;
对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;
对于④,由定义可知
,所以④错误;
综上可知,正确的为②.
故答案为:②.
【答案点睛】
本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.
15、.
【答案解析】
先利用导数求切线的斜率,再写出切线方程.
【题目详解】
因为y′=-5e-5x,所以切线的斜率k=-5e0=-5,所以切线方程是:y-3=-5(x-0),即y=-5x+3.
故答案为y=-5x+3.
【答案点睛】
(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是
16、
【答案解析】
作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.
【题目详解】
作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故
由题可知,联立得,联立得
所以,故
所以的最小值为
故答案为:
【答案点睛】
本题考查分式型目标函数的线性规划问题,属于简单题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),;(2);(3)不能,证明见解析
【答案解析】
(1)求出,结合导数的几何意义即可求解;
(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;
(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.
【题目详解】
(1),
,
曲线在点处的切线方程为,
,
解得.
(2)记,
整理得,
由题知,对任意恒成立,
对任意恒成立,即时,,
,解得,
当时,
对任意,,