温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
宁夏
育才
中学
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p:“”是“”的充要条件;,,则( )
A.为真命题 B.为真命题
C.为真命题 D.为假命题
2.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.
给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是( )
A.①③ B.②④ C.①②③ D.②③④
3.某几何体的三视图如图所示,则该几何体中的最长棱长为( )
A. B. C. D.
4.已知倾斜角为的直线与直线垂直,则( )
A. B. C. D.
5.若时,,则的取值范围为( )
A. B. C. D.
6.如图所示的程序框图,若输入,,则输出的结果是( )
A. B. C. D.
7.在中,,,,点,分别在线段,上,且,,则( ).
A. B. C.4 D.9
8.已知复数z满足i•z=2+i,则z的共轭复数是()
A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i
9.复数(为虚数单位),则等于( )
A.3 B.
C.2 D.
10.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ).
A.432 B.576 C.696 D.960
11.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( )
A. B. C. D.
12.若不相等的非零实数,,成等差数列,且,,成等比数列,则( )
A. B. C.2 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,则____________.
14.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.
15.四边形中,,,,,则的最小值是______.
16.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知等差数列的前n项和为,且,.
求数列的通项公式;
求数列的前n项和.
18.(12分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数).
(1)求与的普通方程;
(2)若与相交于,两点,且,求的值.
19.(12分)已知,函数,(是自然对数的底数).
(Ⅰ)讨论函数极值点的个数;
(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.
20.(12分)已知与有两个不同的交点,其横坐标分别为().
(1)求实数的取值范围;
(2)求证:.
21.(12分)已知函数.
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围.
22.(10分)在中,角、、所对的边分别为、、,且.
(1)求角的大小;
(2)若,的面积为,求及的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解
【题目详解】
由函数是R上的增函数,知命题p是真命题.
对于命题q,当,即时,;
当,即时,,
由,得,无解,
因此命题q是假命题.所以为假命题,A错误;
为真命题,B正确;
为假命题,C错误;
为真命题,D错误.
故选:B
【答案点睛】
本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.
2、B
【答案解析】
利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.
【题目详解】
,
解得(当且仅当时取等号),则②正确;
将和联立,解得,
即圆与曲线C相切于点,,,,
则①和③都错误;由,得④正确.
故选:B.
【答案点睛】
本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.
3、C
【答案解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD ,,再求得其它的棱长比较下结论.
【题目详解】
如图所示:
由三视图得:该几何体是一个三棱锥,且平面SAC 平面ABC,,
过S作,连接BD,则 ,
所以 , ,,,
该几何体中的最长棱长为.
故选:C
【答案点睛】
本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.
4、D
【答案解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.
【题目详解】
解:因为直线与直线垂直,所以,.
又为直线倾斜角,解得.
故选:D.
【答案点睛】
本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.
5、D
【答案解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.
【题目详解】
由题得对恒成立,
令,
在单调递减,且,
在上单调递增,在上单调递减,
,
又在单调递增,,
的取值范围为.
故选:D
【答案点睛】
本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.
6、B
【答案解析】
列举出循环的每一步,可得出输出结果.
【题目详解】
,,不成立,,;
不成立,,;
不成立,,;
成立,输出的值为.
故选:B.
【答案点睛】
本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.
7、B
【答案解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.
【题目详解】
根据题意,,则
在中,又,
则
则
则
则
故选:B
【答案点睛】
此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.
8、D
【答案解析】
两边同乘-i,化简即可得出答案.
【题目详解】
i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.
【答案点睛】
的共轭复数为
9、D
【答案解析】
利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.
【题目详解】
,
所以,,
故选:D.
【答案点睛】
该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.
10、B
【答案解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.
【题目详解】
首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;
若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;
若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;
根据分类加法、分步乘法原理,得满足要求的排队方法数为种.
故选:B.
【答案点睛】
本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.
11、B
【答案解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.
【题目详解】
点的坐标满足方程,
在圆上,
在坐标满足方程,
在圆上,
则作出两圆的图象如图,
设两圆内公切线为与,
由图可知,
设两圆内公切线方程为,
则,
圆心在内公切线两侧,,
可得,,
化为,,
即,
,
的取值范围,故选B.
【答案点睛】
本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.
12、A
【答案解析】
由题意,可得,,消去得,可得,继而得到,代入即得解
【题目详解】
由,,成等差数列,
所以,又,,成等比数列,
所以,消去得,
所以,解得或,
因为,,是不相等的非零实数,
所以,此时,
所以.
故选:A
【答案点睛】
本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据并集的定义计算即可.
【题目详解】
由集合的并集,知.
故答案为:
【答案点睛】
本题考查集合的并集运算,属于容易题.
14、
【答案解析】
分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.
【题目详解】
首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.
故答案为:.
【答案点睛】
本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.
15、
【答案解析】
在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.
【题目详解】
,
如图,在中,由正弦定理可得,
即,故当时,取到最小值为.
故答案为:.
【答案点睛】
本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.
16、1080
【答案解析】
按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.
【题目详解】
将六人分成四组,其中两个组各2人,另两个组各1人有种,
再分别奔赴四所不同的学校参加演讲有种,
则不同的分配方案有种.
故答案为:1080
【答案点睛】
本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
先设出数列的公差为d,结合题中条件,求出首项