温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
松原市
实验
高级中学
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
2.若函数恰有3个零点,则实数的取值范围是( )
A. B. C. D.
3.已知向量,,则向量与的夹角为( )
A. B. C. D.
4.已知,,,,.若实数,满足不等式组,则目标函数( )
A.有最大值,无最小值 B.有最大值,有最小值
C.无最大值,有最小值 D.无最大值,无最小值
5.执行如图所示的程序框图,若输入,,则输出的值为( )
A.0 B.1 C. D.
6.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是( )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
7.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( )
A.-1 B.1 C. D.
8.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )
A.1 B. C.3 D.4
9.已知,若,则等于( )
A.3 B.4 C.5 D.6
10.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()
A. B. C. D.
11.已知函数,则在上不单调的一个充分不必要条件可以是( )
A. B. C.或 D.
12.已知直线是曲线的切线,则( )
A.或1 B.或2 C.或 D.或1
二、填空题:本题共4小题,每小题5分,共20分。
13.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.
14.设复数满足,则_________.
15.(5分)已知函数,则不等式的解集为____________.
16.若,则____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
18.(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面列联表:
并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流.
(i)求这人中,男生、女生各有多少人?
(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表:
0.10
0.05
0.025
0.010
0
2.706
3.841
5.024
6.635
19.(12分)已知,,且.
(1)求的最小值;
(2)证明:.
20.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.
21.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.
(1)求证:.
(2)若点在轴的上方,当的面积最小时,求直线的斜率.
附:多项式因式分解公式:
22.(10分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).
(1)若直线过点,,求的方程;
(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【题目详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
【答案点睛】
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
2、B
【答案解析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.
【题目详解】
函数的导数为,
令,则或,
上单调递减,上单调递增,
所以0或是函数y的极值点,
函数的极值为:,
函数恰有三个零点,则实数的取值范围是:.
故选B.
【答案点睛】
该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.
3、C
【答案解析】
求出,进而可求,即能求出向量夹角.
【题目详解】
解:由题意知,. 则
所以,则向量与的夹角为.
故选:C.
【答案点睛】
本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.
4、B
【答案解析】
判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.
【题目详解】
由,,所以可得.
,
所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:
由此可以判断该目标函数一定有最大值和最小值.
故选:B
【答案点睛】
本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.
5、A
【答案解析】
根据输入的值大小关系,代入程序框图即可求解.
【题目详解】
输入,,
因为,所以由程序框图知,
输出的值为.
故选:A
【答案点睛】
本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.
6、B
【答案解析】
由f(1)=得a2=,
∴a=或a=-(舍),
即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.
7、D
【答案解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.
【题目详解】
如图所示:
因为是△的中位线,
所以到的距离等于△的边上高的一半,
所以,
由此可得,
当且仅当时,即为的中点时,等号成立,
所以,
由平行四边形法则可得,,
将以上两式相加可得,
所以,
又已知,
根据平面向量基本定理可得,
从而.
故选:D
【答案点睛】
本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.
8、A
【答案解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.
【题目详解】
根据三视图可知:该几何体为三棱锥
如图
该几何体为三棱锥,长度如上图
所以
所以
所以
故选:A
【答案点睛】
本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.
9、C
【答案解析】
先求出,再由,利用向量数量积等于0,从而求得.
【题目详解】
由题可知,
因为,所以有,得,
故选:C.
【答案点睛】
该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.
10、A
【答案解析】
根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.
【题目详解】
为偶函数 图象关于轴对称
图象关于对称
时,单调递减 时,单调递增
又且 ,即
本题正确选项:
【答案点睛】
本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.
11、D
【答案解析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.
【题目详解】
,
若在上不单调,令,
则函数对称轴方程为
在区间上有零点(可以用二分法求得).
当时,显然不成立;
当时,只需
或,解得或.
故选:D.
【答案点睛】
本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.
12、D
【答案解析】
求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.
【题目详解】
直线的斜率为,
对于,令,解得,故切点为,代入直线方程得,解得或1.
故选:D
【答案点睛】
本小题主要考查根据切线方程求参数,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.
【题目详解】
由题意得
由正弦定理得
化简得
又为锐角三角形,
则,,
.
故答案为
【答案点睛】
本题主要考查了正弦定理和余弦定理的应用,属于中档题.
14、.
【答案解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.
【题目详解】
∵复数满足,
∴,∴,
故而可得,故答案为.
【答案点睛】
本题考查了复数的运算法则,共轭复数的概念,属于基础题.
15、
【答案解析】
易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为.
16、
【答案解析】
由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.
【题目详解】
因为, 所以,
所以.
故答案为:.
【答案点睛】
本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)单调减区间为,单调增区间为;(2)详见解析;(3).
【答案解析】
试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.
试题解析:
(1)
,
当时,.
解得.
当时,解得.
所以单调减区间为,
单调增区间为.
(2)设
,
当时,由题意,当时,
恒成立.
,
∴当时,恒成立,单调递减.