分享
2023届吉林省松原市实验高级中学高考冲刺押题(最后一卷)数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 吉林省 松原市 实验 高级中学 高考 冲刺 押题 最后 一卷 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在长方体中,,则直线与平面所成角的余弦值为( ) A. B. C. D. 2.若函数恰有3个零点,则实数的取值范围是( ) A. B. C. D. 3.已知向量,,则向量与的夹角为( ) A. B. C. D. 4.已知,,,,.若实数,满足不等式组,则目标函数( ) A.有最大值,无最小值 B.有最大值,有最小值 C.无最大值,有最小值 D.无最大值,无最小值 5.执行如图所示的程序框图,若输入,,则输出的值为( ) A.0 B.1 C. D. 6.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞) D.(-∞,-2] 7.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( ) A.-1 B.1 C. D. 8.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A.1 B. C.3 D.4 9.已知,若,则等于( ) A.3 B.4 C.5 D.6 10.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为() A. B. C. D. 11.已知函数,则在上不单调的一个充分不必要条件可以是( ) A. B. C.或 D. 12.已知直线是曲线的切线,则( ) A.或1 B.或2 C.或 D.或1 二、填空题:本题共4小题,每小题5分,共20分。 13.锐角中,角,,所对的边分别为,,,若,则的取值范围是______. 14.设复数满足,则_________. 15.(5分)已知函数,则不等式的解集为____________. 16.若,则____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知. (1)求的单调区间; (2)当时,求证:对于,恒成立; (3)若存在,使得当时,恒有成立,试求的取值范围. 18.(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟) 将学生日均体育锻炼时间在的学生评价为“锻炼达标”. (1)请根据上述表格中的统计数据填写下面列联表: 并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关? (2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流. (i)求这人中,男生、女生各有多少人? (ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望. 参考公式:,其中. 临界值表: 0.10 0.05 0.025 0.010 0 2.706 3.841 5.024 6.635 19.(12分)已知,,且. (1)求的最小值; (2)证明:. 20.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. (1)求直线和曲线的极坐标方程; (2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值. 21.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点. (1)求证:. (2)若点在轴的上方,当的面积最小时,求直线的斜率. 附:多项式因式分解公式: 22.(10分)已知抛物线的焦点为,直线交于两点(异于坐标原点O). (1)若直线过点,,求的方程; (2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论. 【题目详解】 在长方体中,平面即为平面, 过做于,平面, 平面, 平面,为与平面所成角, 在, , 直线与平面所成角的余弦值为. 故选:C. 【答案点睛】 本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题. 2、B 【答案解析】 求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围. 【题目详解】 函数的导数为, 令,则或, 上单调递减,上单调递增, 所以0或是函数y的极值点, 函数的极值为:, 函数恰有三个零点,则实数的取值范围是:. 故选B. 【答案点睛】 该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大. 3、C 【答案解析】 求出,进而可求,即能求出向量夹角. 【题目详解】 解:由题意知,. 则 所以,则向量与的夹角为. 故选:C. 【答案点睛】 本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算. 4、B 【答案解析】 判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【题目详解】 由,,所以可得. , 所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示: 由此可以判断该目标函数一定有最大值和最小值. 故选:B 【答案点睛】 本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用. 5、A 【答案解析】 根据输入的值大小关系,代入程序框图即可求解. 【题目详解】 输入,, 因为,所以由程序框图知, 输出的值为. 故选:A 【答案点睛】 本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题. 6、B 【答案解析】 由f(1)=得a2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B. 7、D 【答案解析】 根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果. 【题目详解】 如图所示: 因为是△的中位线, 所以到的距离等于△的边上高的一半, 所以, 由此可得, 当且仅当时,即为的中点时,等号成立, 所以, 由平行四边形法则可得,, 将以上两式相加可得, 所以, 又已知, 根据平面向量基本定理可得, 从而. 故选:D 【答案点睛】 本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题. 8、A 【答案解析】 采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【题目详解】 根据三视图可知:该几何体为三棱锥 如图 该几何体为三棱锥,长度如上图 所以 所以 所以 故选:A 【答案点睛】 本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题. 9、C 【答案解析】 先求出,再由,利用向量数量积等于0,从而求得. 【题目详解】 由题可知, 因为,所以有,得, 故选:C. 【答案点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目. 10、A 【答案解析】 根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系. 【题目详解】 为偶函数 图象关于轴对称 图象关于对称 时,单调递减 时,单调递增 又且 ,即 本题正确选项: 【答案点睛】 本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果. 11、D 【答案解析】 先求函数在上不单调的充要条件,即在上有解,即可得出结论. 【题目详解】 , 若在上不单调,令, 则函数对称轴方程为 在区间上有零点(可以用二分法求得). 当时,显然不成立; 当时,只需 或,解得或. 故选:D. 【答案点睛】 本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题. 12、D 【答案解析】 求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值. 【题目详解】 直线的斜率为, 对于,令,解得,故切点为,代入直线方程得,解得或1. 故选:D 【答案点睛】 本小题主要考查根据切线方程求参数,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案. 【题目详解】 由题意得 由正弦定理得 化简得 又为锐角三角形, 则,, . 故答案为 【答案点睛】 本题主要考查了正弦定理和余弦定理的应用,属于中档题. 14、. 【答案解析】 利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果. 【题目详解】 ∵复数满足, ∴,∴, 故而可得,故答案为. 【答案点睛】 本题考查了复数的运算法则,共轭复数的概念,属于基础题. 15、 【答案解析】 易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为. 16、 【答案解析】 由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果. 【题目详解】 因为, 所以, 所以. 故答案为:. 【答案点睛】 本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)单调减区间为,单调增区间为;(2)详见解析;(3). 【答案解析】 试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围. 试题解析: (1) , 当时,. 解得. 当时,解得. 所以单调减区间为, 单调增区间为. (2)设 , 当时,由题意,当时, 恒成立. , ∴当时,恒成立,单调递减.

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开