分享
2023届四川省仁寿县第一中学高考数学倒计时模拟卷(含解析).doc
下载文档

ID:18259

大小:2.06MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 四川省 仁寿县 第一 中学 高考 数学 倒计时 模拟 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设函数的定义域为,命题:,的否定是( ) A., B., C., D., 2.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( ) A. B. C. D. 3.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( ) A. B. C. D. 4. “”是“函数(为常数)为幂函数”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 5.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率 A. B. C. D. 6.函数的部分图象如图所示,则的单调递增区间为( ) A. B. C. D. 7.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( ) A.12种 B.24种 C.36种 D.72种 8.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A.85 B.84 C.57 D.56 9.函数的定义域为(  ) A.[,3)∪(3,+∞) B.(-∞,3)∪(3,+∞) C.[,+∞) D.(3,+∞) 10.在四面体中,为正三角形,边长为6,,,,则四面体的体积为( ) A. B. C.24 D. 11.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 12.已知函数若对区间内的任意实数,都有,则实数的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,两个同心圆的半径分别为和,为大圆的一条 直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括 两点),则的最大值是__________. 14.已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为_____. 15.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________. 16.已知,,且,若恒成立,则实数的取值范围是____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在极坐标系中,已知曲线,. (1)求曲线、的直角坐标方程,并判断两曲线的形状; (2)若曲线、交于、两点,求两交点间的距离. 18.(12分)已知数列满足,,,且. (1)求证:数列为等比数列,并求出数列的通项公式; (2)设,求数列的前项和. 19.(12分)已知函数(其中是自然对数的底数) (1)若在R上单调递增,求正数a的取值范围; (2)若f(x)在处导数相等,证明:; (3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧). 20.(12分)记函数的最小值为. (1)求的值; (2)若正数,,满足,证明:. 21.(12分)已知函数 (1)若对任意恒成立,求实数的取值范围; (2)求证: 22.(10分)已知在中,角、、的对边分别为,,,,. (1)若,求的值; (2)若,求的面积. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据命题的否定的定义,全称命题的否定是特称命题求解. 【题目详解】 因为:,是全称命题, 所以其否定是特称命题,即,. 故选:D 【答案点睛】 本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题. 2、A 【答案解析】 设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可 【题目详解】 设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r. 因为,所以,解得. 因为,所以. 设,易知平面ABC,则. 因为,所以, 即,解得.所以球Q的半径. 故选:A 【答案点睛】 本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题 3、C 【答案解析】 求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程. 【题目详解】 解:抛物线的焦点为 可得双曲线 即为的渐近线方程为 由题意可得,即 又,即 解得,. 即双曲线的方程为. 故选:C 【答案点睛】 本题主要考查了求双曲线的方程,属于中档题. 4、A 【答案解析】 根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断. 【题目详解】 ∵当函数为幂函数时,, 解得或, ∴“”是“函数为幂函数”的充分不必要条件. 故选:A. 【答案点睛】 本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题. 5、B 【答案解析】 设,则,, 因为,所以.若,则,所以, 所以,不符合题意,所以,则, 所以,所以,,设,则, 在中,易得,所以,解得(负值舍去), 所以椭圆的离心率.故选B. 6、D 【答案解析】 由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可. 【题目详解】 由图象知, 所以,, 又图象过点, 所以, 故可取, 所以 令, 解得 所以函数的单调递增区间为 故选:. 【答案点睛】 本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题. 7、C 【答案解析】 先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种. 【题目详解】 不同分配方法总数为种. 故选:C 【答案点睛】 此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题. 8、A 【答案解析】 先求,再确定展开式中的有理项,最后求系数之和. 【题目详解】 解:的展开式中二项式系数和为256 故, 要求展开式中的有理项,则 则二项式展开式中有理项系数之和为: 故选:A 【答案点睛】 考查二项式的二项式系数及展开式中有理项系数的确定,基础题. 9、A 【答案解析】 根据幂函数的定义域与分母不为零列不等式组求解即可. 【题目详解】 因为函数, 解得且; 函数的定义域为, 故选A. 【答案点睛】 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出. 10、A 【答案解析】 推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果. 【题目详解】 解: 在四面体中,为等边三角形,边长为6, ,,, , , 分别取的中点,连结, 则, 且,, , , 平面,平面, , 四面体的体积为: . 故答案为:. 【答案点睛】 本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力. 11、A 【答案解析】 依题意有的周期为.而,故应左移. 12、C 【答案解析】 分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围. 详解:由题得. 当a<1时,,所以函数f(x)在单调递减, 因为对区间内的任意实数,都有, 所以, 所以 故a≥1,与a<1矛盾,故a<1矛盾. 当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减. 所以 因为对区间内的任意实数,都有, 所以, 所以 即 令, 所以 所以函数g(a)在(1,e)上单调递减, 所以, 所以当1≤a<e时,满足题意. 当a时,函数f(x)在(0,1)单调递增, 因为对区间内的任意实数,都有, 所以, 故1+1, 所以 故 综上所述,a∈. 故选C. 点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解. 【题目详解】 以为坐标原点,所在的直线为轴,的垂直平分线为轴, 建立平面直角坐标系, 则、, 由,且, 所以,所以,即 又平分,所以,则, 设, 则,, 所以, 所以 ,, 所以的最大值是. 故答案为: 【答案点睛】 本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题. 14、 【答案解析】 试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为. 考点:余弦定理及等比数列的定义. 15、 【答案解析】 设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可. 【题目详解】 如图, 设双曲线的左焦点为,连接,由于.所以四边形为矩形, 故. 在中, 由双曲线的定义可得 , . 故答案为: 【答案点睛】 本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题. 16、(-4,2) 【答案解析】 试题分析:因为当且仅当时取等号,所以 考点:基本不等式求最值 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开