分享
2023届云南省大理市下关第一中学高考全国统考预测密卷数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 云南省 大理市 下关 第一 中学 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若集合,,则 A. B. C. D. 2.若复数(为虚数单位)的实部与虚部相等,则的值为( ) A. B. C. D. 3.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A.内切 B.相交 C.外切 D.相离 4.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( ) A. B. C. D. 5.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为( ) A. B. C. D. 6.已知函数,,若对任意的,存在实数满足,使得,则的最大值是( ) A.3 B.2 C.4 D.5 7.函数的定义域为,集合,则( ) A. B. C. D. 8.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是( ) A. B. C. D. 9.已知双曲线的一条渐近线倾斜角为,则( ) A.3 B. C. D. 10.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( ) A. B. C. D. 11.若满足,且目标函数的最大值为2,则的最小值为( ) A.8 B.4 C. D.6 12.已知直线与直线则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 二、填空题:本题共4小题,每小题5分,共20分。 13.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种; ______; 14.已知非零向量,满足,且,则与的夹角为____________. 15.满足线性的约束条件的目标函数的最大值为________ 16.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)贫困人口全面脱贫是全面建成小康社会的标志性指标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表: 市场: 需求量(吨) 90 100 110 频数 20 50 30 市场: 需求量(吨) 90 100 110 频数 10 60 30 把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润. (1)求的概率; (2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由. 18.(12分)已知数列的各项均为正数,且满足. (1)求,及的通项公式; (2)求数列的前项和. 19.(12分)若数列前n项和为,且满足(t为常数,且) (1)求数列的通项公式: (2)设,且数列为等比数列,令,.求证:. 20.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)求的普通方程和的直角坐标方程; (2)设曲线与曲线相交于,两点,求的值. 21.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,. ()求与平面所成角的正弦. ()求二面角的余弦值. 22.(10分)已知数列,其前项和为,满足,,其中,,,. ⑴若,,(),求证:数列是等比数列; ⑵若数列是等比数列,求,的值; ⑶若,且,求证:数列是等差数列. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 解一元次二次不等式得或,利用集合的交集运算求得. 【题目详解】 因为或,,所以,故选C. 【答案点睛】 本题考查集合的交运算,属于容易题. 2、C 【答案解析】 利用复数的除法,以及复数的基本概念求解即可. 【题目详解】 ,又的实部与虚部相等, ,解得. 故选:C 【答案点睛】 本题主要考查复数的除法运算,复数的概念运用. 3、B 【答案解析】 化简圆到直线的距离 , 又 两圆相交. 选B 4、D 【答案解析】 先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围. 【题目详解】 由题设有,故,故椭圆, 因为点为上的任意一点,故. 又, 因为,故, 所以. 故选:D. 【答案点睛】 本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题. 5、A 【答案解析】 设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案. 【题目详解】 双曲线的右顶点为,右焦点为, M所在直线为,不妨设, ∴MF的中点坐标为.代入方程可得, ∴,∴,∴(负值舍去). 故选:A. 【答案点睛】 本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程. 6、A 【答案解析】 根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值. 【题目详解】 ,,对任意的,存在实数满足,使得, 易得,即恒成立, ,对于恒成立, 设,则, 令,在恒成立, , 故存在,使得,即, 当时,,单调递减; 当时,,单调递增. ,将代入得: , ,且, 故选:A 【答案点睛】 本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题. 7、A 【答案解析】 根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解. 【题目详解】 解:由函数得,解得,即; 又,解得,即, 则. 故选:A. 【答案点睛】 本题考查了交集及其运算,考查了函数定义域的求法,是基础题. 8、D 【答案解析】 由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解 【题目详解】 函数的图象上两点,关于直线的对称点在上, 即曲线与有两个公共点, 即方程有两解, 即有两解, 令, 则, 则当时,;当时,, 故时取得极大值,也即为最大值, 当时,;当时,, 所以满足条件. 故选:D 【答案点睛】 本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题. 9、D 【答案解析】 由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【题目详解】 由双曲线方程可知:,渐近线方程为:, 一条渐近线的倾斜角为,,解得:. 故选:. 【答案点睛】 本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求. 10、A 【答案解析】 计算出黑色部分的面积与总面积的比,即可得解. 【题目详解】 由,∴. 故选:A 【答案点睛】 本题考查了面积型几何概型的概率的计算,属于基础题. 11、A 【答案解析】 作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值. 【题目详解】 作出可行域,如图所示 由,可得. 平移直线,当直线过可行域内的点时,最大,即最大,最大值为2. 解方程组,得. . , 当且仅当,即时,等号成立. 的最小值为8. 故选:. 【答案点睛】 本题考查简单的线性规划,考查基本不等式,属于中档题. 12、B 【答案解析】 利用充分必要条件的定义可判断两个条件之间的关系. 【题目详解】 若,则,故或, 当时,直线,直线 ,此时两条直线平行; 当时,直线,直线 ,此时两条直线平行. 所以当时,推不出,故“”是“”的不充分条件, 当时,可以推出,故“”是“”的必要条件, 故选:B. 【答案点睛】 本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、36 ;1. 【答案解析】 的可能取值为0,1,2,3,对应的排法有:.分别求出,,,,由此能求出. 【题目详解】 解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数, 则的可能取值为0,1,2,3, 对应的排法有:. ∴对应的排法有36种; , , , , ∴ 故答案为:36;1. 【答案点睛】 本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题. 14、(或写成) 【答案解析】 设与的夹角为,通过,可得,化简整理可求出,从而得到答案. 【题目详解】 设与的夹角为 可得, 故,将代入可得 得到, 于是与的夹角为. 故答案为:. 【答案点睛】 本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力. 15、1 【答案解析】 作出不等式组表示的平面区域,将直线进行平移,利用的几何意义,可求出目标函数的最大值。 【题目详解】 由,得,作出可行域,如图所示: 平移直线,由图像知,当直线经过点时,截距最小,此时取得最大值。 由 ,解得 ,代入直线,得。 【答案点睛】 本题主要考查简单的线性规划问题的解法——平移法。 16、 【答案解析】 过点做,可得,,由可得,可得,代入可得答案. 【题目详解】 解:如图,过点做, 易得:,, ,故,可得:, 同理:,,可得, , 由,可得, 可得:,可得:, , 故答案为:. 【答案点睛】 本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键. 三、解答题:共

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开