温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
大理市
下关
第一
中学
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合,,则
A. B. C. D.
2.若复数(为虚数单位)的实部与虚部相等,则的值为( )
A. B. C. D.
3.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )
A.内切 B.相交 C.外切 D.相离
4.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )
A. B. C. D.
5.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为( )
A. B. C. D.
6.已知函数,,若对任意的,存在实数满足,使得,则的最大值是( )
A.3 B.2 C.4 D.5
7.函数的定义域为,集合,则( )
A. B. C. D.
8.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是( )
A. B. C. D.
9.已知双曲线的一条渐近线倾斜角为,则( )
A.3 B. C. D.
10.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )
A. B.
C. D.
11.若满足,且目标函数的最大值为2,则的最小值为( )
A.8 B.4 C. D.6
12.已知直线与直线则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种; ______;
14.已知非零向量,满足,且,则与的夹角为____________.
15.满足线性的约束条件的目标函数的最大值为________
16.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)贫困人口全面脱贫是全面建成小康社会的标志性指标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表:
市场:
需求量(吨)
90
100
110
频数
20
50
30
市场:
需求量(吨)
90
100
110
频数
10
60
30
把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润.
(1)求的概率;
(2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由.
18.(12分)已知数列的各项均为正数,且满足.
(1)求,及的通项公式;
(2)求数列的前项和.
19.(12分)若数列前n项和为,且满足(t为常数,且)
(1)求数列的通项公式:
(2)设,且数列为等比数列,令,.求证:.
20.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)设曲线与曲线相交于,两点,求的值.
21.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.
()求与平面所成角的正弦.
()求二面角的余弦值.
22.(10分)已知数列,其前项和为,满足,,其中,,,.
⑴若,,(),求证:数列是等比数列;
⑵若数列是等比数列,求,的值;
⑶若,且,求证:数列是等差数列.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
解一元次二次不等式得或,利用集合的交集运算求得.
【题目详解】
因为或,,所以,故选C.
【答案点睛】
本题考查集合的交运算,属于容易题.
2、C
【答案解析】
利用复数的除法,以及复数的基本概念求解即可.
【题目详解】
,又的实部与虚部相等,
,解得.
故选:C
【答案点睛】
本题主要考查复数的除法运算,复数的概念运用.
3、B
【答案解析】
化简圆到直线的距离 ,
又 两圆相交. 选B
4、D
【答案解析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.
【题目详解】
由题设有,故,故椭圆,
因为点为上的任意一点,故.
又,
因为,故,
所以.
故选:D.
【答案点睛】
本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.
5、A
【答案解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.
【题目详解】
双曲线的右顶点为,右焦点为,
M所在直线为,不妨设,
∴MF的中点坐标为.代入方程可得,
∴,∴,∴(负值舍去).
故选:A.
【答案点睛】
本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.
6、A
【答案解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.
【题目详解】
,,对任意的,存在实数满足,使得,
易得,即恒成立,
,对于恒成立,
设,则,
令,在恒成立,
,
故存在,使得,即,
当时,,单调递减;
当时,,单调递增.
,将代入得:
,
,且,
故选:A
【答案点睛】
本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.
7、A
【答案解析】
根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.
【题目详解】
解:由函数得,解得,即;
又,解得,即,
则.
故选:A.
【答案点睛】
本题考查了交集及其运算,考查了函数定义域的求法,是基础题.
8、D
【答案解析】
由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解
【题目详解】
函数的图象上两点,关于直线的对称点在上,
即曲线与有两个公共点,
即方程有两解,
即有两解,
令,
则,
则当时,;当时,,
故时取得极大值,也即为最大值,
当时,;当时,,
所以满足条件.
故选:D
【答案点睛】
本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.
9、D
【答案解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.
【题目详解】
由双曲线方程可知:,渐近线方程为:,
一条渐近线的倾斜角为,,解得:.
故选:.
【答案点睛】
本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.
10、A
【答案解析】
计算出黑色部分的面积与总面积的比,即可得解.
【题目详解】
由,∴.
故选:A
【答案点睛】
本题考查了面积型几何概型的概率的计算,属于基础题.
11、A
【答案解析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.
【题目详解】
作出可行域,如图所示
由,可得.
平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.
解方程组,得.
.
,
当且仅当,即时,等号成立.
的最小值为8.
故选:.
【答案点睛】
本题考查简单的线性规划,考查基本不等式,属于中档题.
12、B
【答案解析】
利用充分必要条件的定义可判断两个条件之间的关系.
【题目详解】
若,则,故或,
当时,直线,直线 ,此时两条直线平行;
当时,直线,直线 ,此时两条直线平行.
所以当时,推不出,故“”是“”的不充分条件,
当时,可以推出,故“”是“”的必要条件,
故选:B.
【答案点睛】
本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、36 ;1.
【答案解析】
的可能取值为0,1,2,3,对应的排法有:.分别求出,,,,由此能求出.
【题目详解】
解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,
则的可能取值为0,1,2,3,
对应的排法有:.
∴对应的排法有36种;
,
,
,
,
∴
故答案为:36;1.
【答案点睛】
本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.
14、(或写成)
【答案解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.
【题目详解】
设与的夹角为
可得,
故,将代入可得
得到,
于是与的夹角为.
故答案为:.
【答案点睛】
本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.
15、1
【答案解析】
作出不等式组表示的平面区域,将直线进行平移,利用的几何意义,可求出目标函数的最大值。
【题目详解】
由,得,作出可行域,如图所示:
平移直线,由图像知,当直线经过点时,截距最小,此时取得最大值。
由 ,解得 ,代入直线,得。
【答案点睛】
本题主要考查简单的线性规划问题的解法——平移法。
16、
【答案解析】
过点做,可得,,由可得,可得,代入可得答案.
【题目详解】
解:如图,过点做,
易得:,,
,故,可得:,
同理:,,可得,
,
由,可得,
可得:,可得:,
,
故答案为:.
【答案点睛】
本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.
三、解答题:共