分享
2023届云南省玉溪市红塔区高考数学一模试卷(含解析).doc
下载文档

ID:18251

大小:1.86MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 云南省 玉溪市 红塔区 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则( ) A.10 B.11 C.12 D.13 2.已知实数集,集合,集合,则( ) A. B. C. D. 3.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( ) A. B. C. D. 4.函数的图象大致为( ) A. B. C. D. 5.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( ) A. B. C. D. 6.已知复数(为虚数单位)在复平面内对应的点的坐标是( ) A. B. C. D. 7.已知函数,若,则的值等于( ) A. B. C. D. 8.设,,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 9.点在所在的平面内,,,,,且,则( ) A. B. C. D. 10.函数的部分图象如图所示,则的单调递增区间为( ) A. B. C. D. 11.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( ) A. B. C. D. 12.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量,,若,则________. 14.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨. 15.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答), 16.已知变量 (m>0),且,若恒成立,则m的最大值________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点. (1)求椭圆的方程; (2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由. 18.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升. 将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,. 3 26.474 1.903 10 209.76 14.05 (1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程. (2)使用参考数据,估计2020年的全国GDP总量. 线性回归方程中斜率和截距的最小二乘法估计公式分别为: ,. 参考数据: 4 5 6 7 8 的近似值 55 148 403 1097 2981 19.(12分)设函数()的最小值为. (1)求的值; (2)若,,为正实数,且,证明:. 20.(12分)已知函数. (1)当时,求函数的值域. (2)设函数,若,且的最小值为,求实数的取值范围. 21.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足. (1)求; (2)若,,求的最大值. 22.(10分)选修4-4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为. (1)写出直线的普通方程与曲线的直角坐标方程; (2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解. 【题目详解】 由,,构成等差数列可得 即 又 解得: 又 所以时,. 故选:D 【答案点睛】 本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题. 2、A 【答案解析】 可得集合,求出补集,再求出即可. 【题目详解】 由,得,即, 所以, 所以. 故选:A 【答案点睛】 本题考查了集合的补集和交集的混合运算,属于基础题. 3、C 【答案解析】 先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围. 【题目详解】 由题化简得,, 作出的图象, 又由易知. 故选:C. 【答案点睛】 本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题. 4、A 【答案解析】 确定函数在定义域内的单调性,计算时的函数值可排除三个选项. 【题目详解】 时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足. 故选:A. 【答案点睛】 本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项. 5、B 【答案解析】 设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B. 6、A 【答案解析】 直接利用复数代数形式的乘除运算化简,求得的坐标得出答案. 【题目详解】 解:, 在复平面内对应的点的坐标是. 故选:A. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 7、B 【答案解析】 由函数的奇偶性可得, 【题目详解】 ∵ 其中为奇函数,也为奇函数 ∴也为奇函数 ∴ 故选:B 【答案点睛】 函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数 8、A 【答案解析】 根据对数的运算分别从充分性和必要性去证明即可. 【题目详解】 若, ,则,可得; 若,可得,无法得到, 所以“”是“”的充分而不必要条件. 所以本题答案为A. 【答案点睛】 本题考查充要条件的定义,判断充要条件的方法是: ① 若为真命题且为假命题,则命题p是命题q的充分不必要条件; ② 若为假命题且为真命题,则命题p是命题q的必要不充分条件; ③ 若为真命题且为真命题,则命题p是命题q的充要条件; ④ 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件. ⑤ 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系. 9、D 【答案解析】 确定点为外心,代入化简得到,,再根据计算得到答案. 【题目详解】 由可知,点为外心, 则,,又, 所以① 因为,② 联立方程①②可得,,,因为, 所以,即. 故选: 【答案点睛】 本题考查了向量模长的计算,意在考查学生的计算能力. 10、D 【答案解析】 由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可. 【题目详解】 由图象知, 所以,, 又图象过点, 所以, 故可取, 所以 令, 解得 所以函数的单调递增区间为 故选:. 【答案点睛】 本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题. 11、D 【答案解析】 将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数; 当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解; 【题目详解】 函数在内都有两个不同的零点, 等价于方程在内都有两个不同的根. ,所以当时,,是增函数; 当时,,是减函数.因此. 设,, 若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解. 设其解为,当时,在上是增函数; 当时,在上是减函数. 因为,方程在内有两个不同的根, 所以,且.由,即,解得. 由,即,所以. 因为,所以,代入,得. 设,,所以在上是增函数, 而,由可得,得. 由在上是增函数,得. 综上所述, 故选:D. 【答案点睛】 本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题 12、A 【答案解析】 由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求. 【题目详解】 如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=, 设三棱锥S-ABC的外接球的球心为O,则外接球的半径R= 取SA中点E,由SA=4,AD=3SD,得DE=1, 所以OD=. 则过点D的平面截球O所得截面圆的最小半径为 所以过点D的平面截球O所得截面的最小面积为 故选:A 【答案点睛】 本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题. 二、填空题:本题共4小题,每小题5分,共20分。 13、10 【答案解析】 根据垂直得到,代入计算得到答案. 【题目详解】 ,则,解得, 故,故. 故答案为:. 【答案点睛】 本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力. 14、10 【答案解析】 根据已知数据直接计算即得. 【题目详解】 由题得,. 故答案为:10 【答案点睛】 本题考查求平均数,是基础题. 15、1080 【答案解析】 按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解. 【题目详解】 将六人分成四组,其中两个组各2人,另两个组各1人有种, 再分别奔赴四所不同的学校参加演讲有种, 则不同的分配方案有种. 故答案为:1080

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开