温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
云南省
玉溪市
红塔区
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则( )
A.10 B.11 C.12 D.13
2.已知实数集,集合,集合,则( )
A. B. C. D.
3.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( )
A. B. C. D.
4.函数的图象大致为( )
A. B.
C. D.
5.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )
A. B. C. D.
6.已知复数(为虚数单位)在复平面内对应的点的坐标是( )
A. B. C. D.
7.已知函数,若,则的值等于( )
A. B. C. D.
8.设,,则“”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
9.点在所在的平面内,,,,,且,则( )
A. B. C. D.
10.函数的部分图象如图所示,则的单调递增区间为( )
A. B.
C. D.
11.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )
A. B. C. D.
12.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若,则________.
14.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨.
15.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),
16.已知变量 (m>0),且,若恒成立,则m的最大值________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.
(1)求椭圆的方程;
(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.
18.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.
将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.
3
26.474
1.903
10
209.76
14.05
(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.
(2)使用参考数据,估计2020年的全国GDP总量.
线性回归方程中斜率和截距的最小二乘法估计公式分别为:
,.
参考数据:
4
5
6
7
8
的近似值
55
148
403
1097
2981
19.(12分)设函数()的最小值为.
(1)求的值;
(2)若,,为正实数,且,证明:.
20.(12分)已知函数.
(1)当时,求函数的值域.
(2)设函数,若,且的最小值为,求实数的取值范围.
21.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.
(1)求;
(2)若,,求的最大值.
22.(10分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.
【题目详解】
由,,构成等差数列可得
即
又
解得:
又
所以时,.
故选:D
【答案点睛】
本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.
2、A
【答案解析】
可得集合,求出补集,再求出即可.
【题目详解】
由,得,即,
所以,
所以.
故选:A
【答案点睛】
本题考查了集合的补集和交集的混合运算,属于基础题.
3、C
【答案解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.
【题目详解】
由题化简得,,
作出的图象,
又由易知.
故选:C.
【答案点睛】
本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.
4、A
【答案解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.
【题目详解】
时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.
故选:A.
【答案点睛】
本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.
5、B
【答案解析】
设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.
6、A
【答案解析】
直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.
【题目详解】
解:,
在复平面内对应的点的坐标是.
故选:A.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.
7、B
【答案解析】
由函数的奇偶性可得,
【题目详解】
∵
其中为奇函数,也为奇函数
∴也为奇函数
∴
故选:B
【答案点睛】
函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数
8、A
【答案解析】
根据对数的运算分别从充分性和必要性去证明即可.
【题目详解】
若, ,则,可得;
若,可得,无法得到,
所以“”是“”的充分而不必要条件.
所以本题答案为A.
【答案点睛】
本题考查充要条件的定义,判断充要条件的方法是:
① 若为真命题且为假命题,则命题p是命题q的充分不必要条件;
② 若为假命题且为真命题,则命题p是命题q的必要不充分条件;
③ 若为真命题且为真命题,则命题p是命题q的充要条件;
④ 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.
⑤ 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
9、D
【答案解析】
确定点为外心,代入化简得到,,再根据计算得到答案.
【题目详解】
由可知,点为外心,
则,,又,
所以①
因为,②
联立方程①②可得,,,因为,
所以,即.
故选:
【答案点睛】
本题考查了向量模长的计算,意在考查学生的计算能力.
10、D
【答案解析】
由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.
【题目详解】
由图象知,
所以,,
又图象过点,
所以,
故可取,
所以
令,
解得
所以函数的单调递增区间为
故选:.
【答案点睛】
本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.
11、D
【答案解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;
当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;
【题目详解】
函数在内都有两个不同的零点,
等价于方程在内都有两个不同的根.
,所以当时,,是增函数;
当时,,是减函数.因此.
设,,
若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.
设其解为,当时,在上是增函数;
当时,在上是减函数.
因为,方程在内有两个不同的根,
所以,且.由,即,解得.
由,即,所以.
因为,所以,代入,得.
设,,所以在上是增函数,
而,由可得,得.
由在上是增函数,得.
综上所述,
故选:D.
【答案点睛】
本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题
12、A
【答案解析】
由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.
【题目详解】
如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,
设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=
取SA中点E,由SA=4,AD=3SD,得DE=1,
所以OD=.
则过点D的平面截球O所得截面圆的最小半径为
所以过点D的平面截球O所得截面的最小面积为
故选:A
【答案点睛】
本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.
二、填空题:本题共4小题,每小题5分,共20分。
13、10
【答案解析】
根据垂直得到,代入计算得到答案.
【题目详解】
,则,解得,
故,故.
故答案为:.
【答案点睛】
本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.
14、10
【答案解析】
根据已知数据直接计算即得.
【题目详解】
由题得,.
故答案为:10
【答案点睛】
本题考查求平均数,是基础题.
15、1080
【答案解析】
按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.
【题目详解】
将六人分成四组,其中两个组各2人,另两个组各1人有种,
再分别奔赴四所不同的学校参加演讲有种,
则不同的分配方案有种.
故答案为:1080