分享
2023届上海市松江区高考仿真卷数学试题(含解析).doc
下载文档

ID:18231

大小:1.97MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 上海市 松江区 高考 仿真 数学试题 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( ) A.3 B. C.4 D. 2.已知集合,则( ) A. B. C. D. 3.复数满足,则( ) A. B. C. D. 4.已知实数满足约束条件,则的最小值是 A. B. C.1 D.4 5.已知为实数集,,,则( ) A. B. C. D. 6.执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). A. B. C. D. 7.是恒成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 8.设是虚数单位,则( ) A. B. C. D. 9.若为虚数单位,则复数的共轭复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( ) A. B. C. D. 11.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是( ) A. B. C. D. 12.在三棱锥中,,且分别是棱,的中点,下面四个结论: ①; ②平面; ③三棱锥的体积的最大值为; ④与一定不垂直. 其中所有正确命题的序号是( ) A.①②③ B.②③④ C.①④ D.①②④ 二、填空题:本题共4小题,每小题5分,共20分。 13.,则f(f(2))的值为____________. 14.在的展开式中,的系数等于__. 15.已知复数(为虚数单位)为纯虚数,则实数的值为_____. 16.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为 ______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在中,内角的对边分别为,且 (1)求; (2)若,且面积的最大值为,求周长的取值范围. 18.(12分)已知函数,. (1)求曲线在点处的切线方程; (2)求函数的极小值; (3)求函数的零点个数. 19.(12分)设的内角、、的对边长分别为、、.设为的面积,满足. (1)求; (2)若,求的最大值. 20.(12分)已知,函数. (Ⅰ)若在区间上单调递增,求的值; (Ⅱ)若恒成立,求的最大值.(参考数据:) 21.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上. (1)求椭圆的方程; (2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由. 22.(10分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上. (1)求椭圆的标准方程; (2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可. 【题目详解】 由题意可知:, 所以,, 所以,所以, 又因为,所以, 所以. 故选:B. 【答案点睛】 本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键. 2、B 【答案解析】 计算,再计算交集得到答案 【题目详解】 ,表示偶数, 故. 故选:. 【答案点睛】 本题考查了集合的交集,意在考查学生的计算能力. 3、C 【答案解析】 利用复数模与除法运算即可得到结果. 【题目详解】 解: , 故选:C 【答案点睛】 本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题. 4、B 【答案解析】 作出该不等式组表示的平面区域,如下图中阴影部分所示, 设,则,易知当直线经过点时,z取得最小值, 由,解得,所以,所以,故选B. 5、C 【答案解析】 求出集合,,,由此能求出. 【题目详解】 为实数集,,, 或, . 故选:. 【答案点睛】 本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题. 6、C 【答案解析】 框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【题目详解】 第一次循环:;第二次循环:; 第三次循环:;第四次循环:; 此时满足输出结果,故. 故选:C. 【答案点睛】 本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 7、A 【答案解析】 设 成立;反之,满足 ,但,故选A. 8、A 【答案解析】 利用复数的乘法运算可求得结果. 【题目详解】 由复数的乘法法则得. 故选:A. 【答案点睛】 本题考查复数的乘法运算,考查计算能力,属于基础题. 9、B 【答案解析】 由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解 【题目详解】 由题意得, 因为,, 所以在复平面内对应的点位于第二象限. 故选:B 【答案点睛】 本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题. 10、D 【答案解析】 设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案. 【题目详解】 设双曲线的左焦点为,连接,,, 设,则,,, ,根据对称性知四边形为矩形, 中:,即,解得; 中:,即,故,故. 故选:. 【答案点睛】 本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 11、C 【答案解析】 化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由 得可判断④. 【题目详解】 由题意,,所以,故①正确; 为偶函数,故②错误;当 时,,单调递减,故③正确;若对任意,都有 成立,则为最小值点,为最大值点,则的最小值为 ,故④正确. 故选:C. 【答案点睛】 本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题. 12、D 【答案解析】 ①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直. 【题目详解】 设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确. 故选:D 【答案点睛】 本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、1 【答案解析】 先求f(1),再根据f(1)值所在区间求f(f(1)). 【题目详解】 由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1. 【答案点睛】 本题考查分段函数求值,考查对应性以及基本求解能力. 14、7 【答案解析】 由题,得,令,即可得到本题答案. 【题目详解】 由题,得, 令,得x的系数. 故答案为:7 【答案点睛】 本题主要考查二项式定理的应用,属基础题. 15、 【答案解析】 利用复数的乘法求解再根据纯虚数的定义求解即可. 【题目详解】 解:复数为纯虚数, 解得. 故答案为:. 【答案点睛】 本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题. 16、 【答案解析】 先求出球O1的半径,再求出球的半径,即得球的表面积. 【题目详解】 解:,, , , 设球O1的半径为,由题得, 所以棱柱的侧棱为. 由题得棱柱外接球的直径为,所以外接球的半径为, 所以球的表面积为. 故答案为: 【答案点睛】 本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)(2) 【答案解析】 (1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值; (2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围. 【题目详解】 解:(1) 整理得 解得或(舍去) 又 ; (2)由题意知 , 又, , 又 周长的取值范围是 【答案点睛】 本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题. 18、(1);(2)极小值;(3)函数的零点个数为. 【答案解析】 (1)求出和的值,利用点斜式可得出所求切线的方程; (2)利用导数分析函数的单调性,进而可得出该函数的极小值; (3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数. 【题目详解】 (1)因为,所以. 所以,. 所以曲线在点处的切线为; (2)因为,令,得或. 列表如下: 0 极大值 极小值 所以,函数的单调递增区间为和,单调递减区间为, 所以,当时,函数有极小值; (3)当时,,且. 由(2)可知,函数在上单调递增,所以函数的零点个数为. 【答案点睛】 本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题. 19、 (1);(2). 【答案解析】 (1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出; (2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出, 即可得到,再利用三角恒等变换,化简为,即可求出最大值. 【题目详解】 (1)∵,即, ∴变形得:, 整理得:, 又,∴; (2)∵,∴, 由正弦定理知,, ∴ ,当且仅当时取最大值. 故的最大值为. 【答案点睛】 本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题 20、(Ⅰ);(Ⅱ)3. 【答案解析】 (Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解; (Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开