温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
黑龙江省
安达市
重点中学
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等比数列中,,则与的等比中项是( )
A.±4 B.4 C. D.
2.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )
A. B. C. D.
3.已知函数的部分图象如图所示,则( )
A. B. C. D.
4.如图所示的程序框图,若输入,,则输出的结果是( )
A. B. C. D.
5.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )
A. B. C. D.
6.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
7.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则( )
A., B.,
C., D.,
8.已知集合,,则等于( )
A. B. C. D.
9.设,满足约束条件,则的最大值是( )
A. B. C. D.
10.已知全集为,集合,则( )
A. B. C. D.
11.已知不等式组表示的平面区域的面积为9,若点, 则的最大值为( )
A.3 B.6 C.9 D.12
12.直线与圆的位置关系是( )
A.相交 B.相切 C.相离 D.相交或相切
二、填空题:本题共4小题,每小题5分,共20分。
13.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.
14.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.
15.已知复数(为虚数单位),则的模为____.
16.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.
(1)若,且恰为的左焦点,求的两条渐近线的方程;
(2)若,且,求实数的值;
(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.
18.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.
(1)证明:平面;
(2)求点N到平面CDM的距离.
19.(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:
分数不少于120分
分数不足120分
合计
线上学习时间不少于5小时
4
19
线上学习时间不足5小时
合计
45
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式其中)
20.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.
21.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求的极坐标方程和的直角坐标方程;
(Ⅱ)设分别交于两点(与原点不重合),求的最小值.
22.(10分)已知函数.
(1)讨论的单调性;
(2)若恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用等比数列的性质可得 ,即可得出.
【题目详解】
设与的等比中项是.
由等比数列的性质可得, .
∴与的等比中项
故选A.
【答案点睛】
本题考查了等比中项的求法,属于基础题.
2、A
【答案解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.
【题目详解】
构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.
由得,所以,故不等式的解集为.
故选:A
【答案点睛】
本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.
3、A
【答案解析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.
【题目详解】
由图象可知A=1,
∵,所以T=π,∴.
∴f(x)=sin(2x+φ),将代入得φ)=1,
∴φ,结合0<φ,∴φ.
∴.
∴sin
.
故选:A.
【答案点睛】
本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.
4、B
【答案解析】
列举出循环的每一步,可得出输出结果.
【题目详解】
,,不成立,,;
不成立,,;
不成立,,;
成立,输出的值为.
故选:B.
【答案点睛】
本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.
5、B
【答案解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.
【题目详解】
函数
则函数的最大值为2,
存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即
故答案为:B.
【答案点睛】
这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.
6、A
【答案解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【题目详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【答案点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.
7、B
【答案解析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.
【题目详解】
可能的取值为;可能的取值为,
,,,
故,.
,,
故,,
故,.故选B.
【答案点睛】
离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.
8、A
【答案解析】
进行交集的运算即可.
【题目详解】
,1,2,,,
,1,.
故选:.
【答案点睛】
本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.
9、D
【答案解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.
【题目详解】
作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.
由得:,
故选:D
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.
10、D
【答案解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,
再由交集的定义求解即可.
【题目详解】
,
,.
故选:D
【答案点睛】
本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.
11、C
【答案解析】
分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.
详解:作出不等式组对应的平面区域如图所示:
则,所以平面区域的面积,
解得,此时,
由图可得当过点时,取得最大值9,故选C.
点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.
12、D
【答案解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.
【题目详解】
解:由题意,圆的圆心为,半径,
∵圆心到直线的距离为,
,
,
故选:D.
【答案点睛】
本题主要考查直线与圆的位置关系,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、①
【答案解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;
由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.
【题目详解】
解:①在中,,故①正确;
②函数在区间上存在零点,比如在存在零点,
但是,故②错误;
③对于函数,若,满足,
但可能为奇函数,故③错误;
④函数与的图象,可令,即,
即有和的图象关于直线对称,即对称,故④错误.
故答案为:①.
【答案点睛】
本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.
14、
【答案解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.
【题目详解】
满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.
故答案为:
【答案点睛】
本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.
15、
【答案解析】
,所以.
16、
【答案解析】
设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,