2023
学年
高考
数学
一轮
复习
课时
作业
67
随机
抽样
课时作业67 随机抽样
[基础达标]
一、选择题
1.下面的抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位是2 709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见
D.用抽签法从10件产品中抽取3件进行质量检验
解析:A、B是系统抽样,因为抽取的个体间的间隔是固定的;C是分层抽样,因为总体的个体有明显的层次;D是简单随机抽样.
答案:D
2.[2023年·福建福州质量检测]为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )
A.简单随机抽样
B.按性别分层抽样
C.按年龄段分层抽样
D.系统抽样
解析:根据分层抽样的特征知选C.
答案:C
3.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
A.50 B.40
C.25 D.20
解析:由=25,可得分段的间隔为25.故选C.
答案:C
4.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )
A.50 B.60
C.70 D.80
解析:由分层抽样方法得×n=15,解之得n=70.
答案:C
5.某月月底,某商场想通过抽取发票存根的方法估计该月的销售总额.先将该月的全部销售发票的存根进行了编号,1,2,3,…,然后拟采用系统抽样的方法获取一个样本.若从编号为1,2,3,…,10的前10张发票的存根中随机抽取1张,然后再按系统抽样的方法依编号顺序逐次产生第2张、第3张、第4张、……,则抽样中产生的第2张已编号的发票存根,其编号不可能是( )
A.13 B.17
C.19 D.23
解析:因为第一组的编号为1,2,3,…,10,所以根据系统抽样的定义可知第二组的编号为11,12,13,…,20,故第2张已编号的发票存根的编号不可能为23.
答案:D
6.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
A.08 B.07
C.02 D.01
解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.
答案:D
7.[2023年·安徽宣城模拟]一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是,则男运动员应抽取( )
A.18人 B.16人
C.14人 D.12人
解析:∵田径队共有运动员98人,其中女运动员有42人,∴男运动员有56人,
∵每名运动员被抽到的概率都是,
∴男运动员应抽取56×=16(人),故选B.
答案:B
8.[2023年·安徽皖北联考]某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )
A.5 B.7
C.11 D.13
解析:把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组,所以第1组抽到的数为39-32=7.
答案:B
9.[2023年·兰州双基测试]从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
解析:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.
答案:D
10.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为一,二,三,…,十.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第七组中抽取的号码是( )
A.63 B.64
C.65 D.66
解析:若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.
答案:A
二、填空题
11.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为____________.
解析:因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为适合.
答案:简单随机抽样
12.[2023年·福建三明质检]某校为了解学生的身体素质情况,采用按年级分层抽样的方法,从高一、高二、高三年级的学生中抽取一个300人的样本进行调查,已知高一、高二、高三年级的学生人数之比为k:5:4,抽取的样本中高一年级的学生有120人,则实数k的值为________.
解析:由题意可得,=,解得k=6.
答案:6
13.为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是________.
解析:由系统抽样的原理知抽样的间隔为=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知填20.
答案:20
14.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁以下年龄段应抽取________人.
解析:将全体职工随机按1~200编号,并按编号顺序平均分为40组,由分组可知,抽号的间隔为5.∵第5组抽出的号码为22,∴第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为200×0.5=100,若用分层抽样法,则40岁以下年龄段应抽取的人数为×100=20.
答案:37 20
[能力挑战]
15.[2023年·湖北黄冈期末]为了调查学生对某项新政策的了解情况,准备从某校高一A,B,C三个班级中抽取10名学生进行调查.已知A,B,C三个班级的学生人数分别为40,30,30.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按A,B,C三个班级依次统一编号为1,2,…,100;使用系统抽样时,将学生按A,B,C三个班级依次统一编号为1,2,…,100,并将所有编号依次平均分为10组.如果抽得的号码有下列四种情况:
①7,17,27,37,47,57,67,77,87,97;
②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99;
④2,12,22,32,42,52,62,73,83,96.
关于上述样本的下列结论中,正确的是( )
A.①③都可能为分层抽样 B.②④都不能为分层抽样
C.①④都可能为系统抽样 D.②③都不能为系统抽样
解析:对于①,既满足系统抽样的数据特征,又满足分层抽样的数据特征,所以可能是分层抽样或系统抽样;对于②,只满足分层抽样的数据特征,所以可能是分层抽样;对于③,既满足系统抽样的数据特征,又满足分层抽样的数据特征,所以可能是分层抽样或系统抽样;对于④,只满足分层抽样的数据特征,所以可能是分层抽样.故选A.
答案:A
16.[2023年·全国卷Ⅲ]《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6
C.0.7 D.0.8
解析:本题主要考查韦恩图的应用与概率问题,考查考生的阅读理解能力,考查的核心素养是数学抽象、逻辑推理、数据分析.
根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:
所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.
答案:C
17.[2023年·武汉市武昌区调研考试]已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率;先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果.经随机模拟产生了如下20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947
1417 4698 0371 6233 2616 8045 6011 3661
9597 7424 7610 4281
据此估计,该射击运动员4次射击至少3次击中目标的概率为________.
解析:4次射击中有1次或2次击中目标的有:0371,6011,7610,1417,7140,∴所求概率P=1-==0.75.
答案:0.75
6