温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
高考
数学
一轮
复习
第五
平面
向量
数量
应用
举例
高效
演练
分层
突破
新人
第3讲 平面向量的数量积及应用举例[基础题组练]
1.设a=(1,2),b=(1,1),c=a+kb.若b⊥c,则实数k的值等于( )
A.- B.-
C. D.
解析:选A.c=a+kb=(1,2)+k(1,1)=(1+k,2+k),因为b⊥c,所以b·c=0,b·c=(1,1)·(1+k,2+k)=1+k+2+k=3+2k=0,所以k=-.
2.(2023年·湖南省五市十校联考)已知向量a,b满足|a|=1,|b|=2,a·(a-2b)=0,则|a+b|=( )
A. B.
C.2 D.
解析:选A.由题意知,a·(a-2b)=a2-2a·b=1-2a·b=0,所以2a·b=1,所以|a+b|===.故选A.
3.(2023年·广州市综合检测(一))a,b为平面向量,已知a=(2,4),a-2b=(0,8),则a,b夹角的余弦值等于( )
A.- B.-
C. D.
解析:选B.设b=(x,y),则有a-2b=(2,4)-(2x,2y)=(2-2x,4-2y)=(0,8),所以,解得,故b=(1,-2),|b|=,|a|=2,cos〈a,b〉===-,故选B.
4.(2023年·四川资阳第一次模拟)已知向量a,b满足a·b=0,|a+b|=m|a|,若a+b与a-b的夹角为,则m的值为( )
A.2 B.
C.1 D.
解析:选A.因为a·b=0,所以|a+b|=|a-b|,因为|a+b|=m|a|,所以(a+b)2=m2a2,所以a2+b2=m2a2,所以b2=(m2-1)a2.
又a+b与a-b的夹角为,所以=cos,
所以===-.
解得m=2或m=-2(舍去).故选A.
5.(2023年·郑州市第二次质量预测)在Rt△ABC中,∠C=90°,CB=2,CA=4,P在边AC的中线BD上,则·的最小值为( )
A.- B.0
C.4 D.-1
解析:选A.依题意,以C为坐标原点,分别以AC,BC所在的直线为x,y轴,建立如图所示的平面直角坐标系,则B(0,2),D(2,0),所以直线BD的方程为y=-x+2,因为点P在边AC的中线BD上,所以可设P(t,2-t)(0≤t≤2),所以=(t,2-t),=(t,-t),所以·=t2-t(2-t)=2t2-2t=2-,当t=时,·取得最小值-,故选A.
6.(2023年·高考全国卷Ⅲ)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉= .
解析:设a=(1,0),b=(0,1),则c=(2,-),
所以cos〈a,c〉==.
答案:
7.已知点M,N满足||=||=3,且|+|=2,则M,N两点间的距离为 .
解析:依题意,得|+|2=||2+||2+2·=18+2·=20,则·=1,故M,N两点间的距离为||=|-|
=
==4.
答案:4
8.(2023年·山东师大附中二模改编)已知向量a,b,其中|a|=,|b|=2,且(a-b)⊥a,则向量a和b的夹角是 ,a·(a+b)= .
解析:由题意,设向量a,b的夹角为θ,因为|a|=,|b|=2,且(a-b)⊥a,所以(a-b)·a=|a|2-a·b=|a|2-|a||b|cos θ=3-2·cos θ=0,解得cos θ=.又因为0≤θ≤π,所以θ=.则a·(a+b)=|a|2+|a|·|b|·cos θ=3+2×=6.
答案: 6
9.已知向量a=(2,-1),b=(1,x).
(1)若a⊥(a+b),求|b|的值;
(2)若a+2b=(4,-7),求向量a与b夹角的大小.
解:(1)由题意得a+b=(3,-1+x).
由a⊥(a+b),可得6+1-x=0,
解得x=7,即b=(1,7),
所以|b|==5.
(2)由题意得,a+2b=(4,2x-1)=(4,-7),
故x=-3,
所以b=(1,-3),
所以cos〈a,b〉===,
因为〈a,b〉∈[0,π],
所以a与b夹角是.
10.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|;
(3)若=a,=b,求△ABC的面积.
解:(1)因为(2a-3b)·(2a+b)=61,
所以4|a|2-4a·b-3|b|2=61.
又|a|=4,|b|=3,
所以64-4a·b-27=61,所以a·b=-6,
所以cos θ===-.
又0≤θ≤π,所以θ=.
(2)|a+b|2=(a+b)2
=|a|2+2a·b+|b|2
=42+2×(-6)+32=13,所以|a+b|=.
(3)因为与的夹角θ=,
所以∠ABC=π-=.
又||=|a|=4,||=|b|=3,
所以S△ABC=×4×3×=3.
[综合题组练]
1.(2023年·安徽五校联盟第二次质检)已知O是△ABC内部一点,且满足++=0,又·=2,∠BAC=60°,则△OBC的面积为( )
A. B.3
C.1 D.2
解析:选C.由·=2,∠BAC=60°,可得·=||·||cos ∠BAC=·||||=2,所以||||=4,所以S△ABC=||||sin∠BAC=3,又++=0,所以O为△ABC的重心,所以S△OBC=S△ABC=1,故选C.
2.(2023年·河北衡水中学期末)在四边形ABCD中,已知M是AB边上的点,且MA=MB=MC=MD=1,∠CMD=120°,若点N在线段CD(端点C,D除外)上运动,则·的取值范围是( )
A.[-1,0) B.
C.[-1,1) D.
解析:选B.连接MN.由题意得·=(-)·(-)=2-2=||2-1.在△MCN中,MC=1,∠MCN=30°,所以MN2=12+NC2-2×NC×1×=NC2-NC+1,所以MN2-1=NC2-NC=-.由MC=MD=1,∠CMD=120°,可得CD=,又点N在线段CD(端点C,D除外)上运动,所以0<NC<.
所以-≤MN2-1<0,即·的取值范围是.故选B.
3.(创新型)在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知向量m=(cos B,2cos2 -1),n=(c,b-2a),且m·n=0.
(1)求∠C的大小;
(2)若点D为边AB上一点,且满足=,||=,c=2,求△ABC的面积.
解:(1)因为m=(cos B,cos C),n=(c,b-2a),m·n=0,
所以ccos B+(b-2a)cos C=0,在△ABC中,由正弦定理得sin Ccos B+(sin B-2sin A)cos C=0,
sin A=2sin Acos C,又sin A≠0,
所以cos C=,而C∈(0,π),所以∠C=.
(2)由=知,-=-,
所以2=+,
两边平方得4||2=b2+a2+2bacos ∠ACB=b2+a2+ba=28.①
又c2=a2+b2-2abcos ∠ACB,
所以a2+b2-ab=12.②
由①②得ab=8,
所以S△ABC=absin ∠ACB=2.
4.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),||=1,且∠AOC=θ,其中O为坐标原点.
(1)若θ=π,设点D为线段OA上的动点,求|+|的最小值;
(2)若θ∈,向量m=,n=(1-cos θ,sin θ-2cos θ),求m·n的最小值及对应的θ值.
解:(1)设D(t,0)(0≤t≤1),
由题意知C,
所以+=,
所以|+|2=-t+t2+
=t2-t+1=+,
所以当t=时,|+|有最小值,为.
(2)由题意得C(cos θ,sin θ),m==(cos θ+1,sin θ),
则m·n=1-cos2θ+sin2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-sin,
因为θ∈,所以≤2θ+≤,
所以当2θ+=,即θ=时,sin取得最大值1.
所以当θ=时,m·n取得最小值,为1-.
6