大题专项练(五)函数与导数A组基础通关1.(2017全国Ⅰ,理21)已知函数f(x)=ae2x+(a-2)ex-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解(1)f(x)的定义域为(-∞,+∞),f'(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1).(ⅰ)若a≤0,则f'(x)<0,所以f(x)在(-∞,+∞)单调递减.(ⅱ)若a>0,则由f'(x)=0得x=-lna.当x∈(-∞,-lna)时,f'(x)<0;当x∈(-lna,+∞)时,f'(x)>0,所以f(x)在(-∞,-lna)单调递减,在(-lna,+∞)单调递增.(2)(ⅰ)若a≤0,由(1)知,f(x)至多有一个零点.(ⅱ)若a>0,由(1)知,当x=-lna时,f(x)取得最小值,最小值为f(-lna)=1-1a+lna.①当a=1时,由于f(-lna)=0,故f(x)只有一个零点;②当a∈(1,+∞)时,由于1-1a+lna>0,即f(-lna)>0,故f(x)没有零点;③当a∈(0,1)时,1-1a+lna<0,即f(-lna)<0.又f(-2)=ae-4+(a-2)e-2+2>-2e-2+...