温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
高考
数学
一轮
复习
第十二
复数
算法
推理
证明
直接
间接
高效
演练
分层
突破
新人
第4讲 直接证明与间接证明
[基础题组练]
1.(2023年·衡阳示范高中联考(二))用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个是偶数”的正确假设为( )
A.自然数a,b,c中至少有两个偶数
B.自然数a,b,c中至少有两个偶数或都是奇数
C.自然数a,b,c都是奇数
D.自然数a,b,c都是偶数
解析:选B.“自然数a,b,c中恰有一个是偶数”说明有且只有一个是偶数,其否定是“自然数a,b,c均为奇数或自然数a,b,c中至少有两个偶数”.
2.分析法又称执果索因法,已知x>0,用分析法证明<1+时,索的因是( )
A.x2>2 B.x2>4
C.x2>0 D.x2>1
解析:选C.因为x>0,所以要证<1+,只需证()2<,即证0<,即证x2>0,显然x2>0成立,故原不等式成立.
3.在△ABC中,sin Asin C<cos Acos C,则△ABC一定是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
解析:选C.由sin Asin C<cos Acos C得
cos Acos C-sin Asin C>0,
即cos(A+C)>0,所以A+C是锐角,
从而B>,故△ABC必是钝角三角形.
4.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为( )
A.A≤B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
解析:选A.因为≥≥,又f(x)=在R上是减函数,所以f≤f()≤f,即A≤B≤C.
5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值( )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
解析:选A.由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,
由x1+x2>0,可知x1>-x2,f(x1)<f(-x2)=-f(x2),则f(x1)+f(x2)<0.
6.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为 .
解析:“x≠a且x≠b”的否定是“x=a或x=b”,因此应假设为x=a或x=b.
答案:x=a或x=b
7.设a=+2,b=2+,则a,b的大小关系为 .
解析:a=+2,b=2+,两式的两边分别平方,可得a2=11+4,b2=11+4,显然<,所以a<b.
答案:a<b
8.(2023年·福州模拟)如果a+b>a+b,则a,b应满足的条件是 .
解析:a+b>a+b,即(-)2(+)>0,需满足a≥0,b≥0且a≠b.
答案:a≥0,b≥0且a≠b
9.在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos 2B=1.
(1)求证:a,b,c成等差数列;
(2)若C=,求证:5a=3b.
证明:(1)由已知得sin Asin B+sin Bsin C=2sin2 B,因为sin B≠0,所以sin A+sin C=2sin B,由正弦定理,有a+c=2b,即a,b,c成等差数列.
(2)由C=,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,即5a=3b.
10.已知四棱锥SABCD中,底面是边长为1的正方形,又SB=SD=,SA=1.
(1)求证:SA⊥平面ABCD;
(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.
解:(1)证明:由已知得SA2+AD2=SD2,
所以SA⊥AD.
同理SA⊥AB.
又AB∩AD=A,AB⊂平面ABCD,
AD⊂平面ABCD,
所以SA⊥平面ABCD.
(2)假设在棱SC上存在异于S,C的点F,
使得BF∥平面SAD.
因为BC∥AD,BC⊄平面SAD.
所以BC∥平面SAD,而BC∩BF=B,
所以平面FBC∥平面SAD.
这与平面SBC和平面SAD有公共点S矛盾,
所以假设不成立.
所以不存在这样的点F,
使得BF∥平面SAD.
[综合题组练]
1.已知a,b,c∈R,若·>1且+≥-2,则下列结论成立的是( )
A.a,b,c同号
B.b,c同号,a与它们异号
C.a,c同号,b与它们异号
D.b,c同号,a与b,c的符号关系不确定
解析:选A.由·>1知与同号,
若>0且>0,不等式+≥-2显然成立,
若<0且<0,则->0,->0,
+≥2 >2,即+<-2,
这与+≥-2矛盾,故>0且>0,即a,b,c同号.
2.(应用型)(一题多解)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是 .
解析:法一(补集法):f(x)在区间[-1,1]内至少存在一点c.使f(c)>0,该结论的否定是对于区间[-1,1]内的任意一点c,都有f(c)≤0,
令解得p≤-3或p≥,
故满足条件的p的取值范围为.
法二(直接法):依题意有f(-1)>0或f(1)>0,
即2p2-p-1<0或2p2+3p-9<0,
得-<p<1或-3<p<,
故满足条件的p的取值范围是.
答案:
3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0.
(1)证明:是f(x)=0的一个根;
(2)试比较与c的大小.
解:(1)证明:因为f(x)的图象与x轴有两个不同的交点,
所以f(x)=0有两个不等实根x1,x2,
因为f(c)=0,
所以x1=c是f(x)=0的根,
又x1x2=,
所以x2=,
所以是f(x)=0的一个根.
(2)假设<c,又>0,
由0<x<c时,f(x)>0,
知f>0与f=0矛盾,
所以≥c,又因为≠c,所以>c.
4.(综合型)若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
(1)设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
(2)是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由.
解:(1)由已知得g(x)=(x-1)2+1,其图象的对称轴为x=1,
所以函数在区间[1,b]上单调递增,由“四维光军”函数的定义可知 ,g(1)=1,g(b)=b,
即b2-b+=b,
解得b=1或b=3.
因为b>1,所以b=3.
(2)假设函数h(x)=在区间[a,b](a>-2)上是“四维光军”函数,
因为h(x)=在区间(-2,+∞)上单调递减,
所以有即
解得a=b,这与已知矛盾.故不存在.
6