分享
2023年冲刺阅读理解型问题基础.docx
下载文档

ID:1762373

大小:25.45KB

页数:10页

格式:DOCX

时间:2023-04-22

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 冲刺 阅读 理解 问题 基础
中考冲刺:阅读理解型问题(根底)   一、选择题   1.(2023•江西模拟)二次函数y=x2﹣(m﹣1)x﹣m,其中m>0,它的图象与x轴从左到右交于R和Q两点,与y轴交于点P,点O是坐标原点.以下判断中不正确的选项是(  )   A.方程x2﹣(m﹣1)x﹣m=0一定有两个不相等的实数根   B.点R的坐标一定是(﹣1,0)   C.△POQ是等腰直角三角形   D.该二次函数图象的对称轴在直线x=﹣1的左侧   2.假设一个图形绕着一个定点旋转一个角α(0°<α<180°)后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如下列图)能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面图所示的图形中,是旋转对称图形的有(  )          A.1个   B.2个   C.3个   D.4个   二、填空题   3.阅读以下材料,并解决后面的问题.   在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),那么sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.   同理有,.   所以………(x)                         即:在一个三角形中,各边和它所对角的正弦的比相等.   在锐角三角形中,假设三个元素a、b、∠A,运用上述结论(x)和有关定理就可以求出其余三个未知元素c、 ∠B、∠C,请你按照以下步骤填空,完成求解过程:   第一步:由条件a、b、∠A  ______∠B;   第二步:由条件  ∠A、∠B. ______∠C;   第三步:由条件.____________c.   4.(榆树市期末)我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.   (1)判断以下说法是否正确(在相应横线里填上“对〞或“错〞)   ①正五边形是旋转对称图形,它有一个旋转角为144°.__________________   ②长方形是旋转对称图形,它有一个旋转角为180°.__________________   (2)填空:以下列图形中时旋转对称图形,且有一个旋转角为120°的是__________________.(写出所有正确结论的序号)   ①正三角形  ②正方形  ③正六边形  ④正八边形   (3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,其中一个是轴对称图形,但不是中心对称图形;另一个既是轴对称图形,又是中心对称图形.        .(写在横线上)                         三、解答题   5. 阅读材料:   为解方程,我们可以将看作一个整体,然后设,那么原方程可化为①,解得y1=1,y2=4.   当y=1时,,∴ ,∴ ;   当y=4时,,∴ ,∴ .   故原方程的解为:   ,,,.   解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法到达了解方程的目的,表达了转化的数学思想;   (2)请利用以上知识解方程.   6.阅读材料,解答问题:图2-7-2表示我国农村居民的小康生活水平实现程度.地处西部的某贫困县,农村人口约50万,2022年农村小康生活的综合实现程度才到达68%,即没有到达小康程度的人口约为 (1-68 %)×50万= 16万.                 (1)假设该县方案在2022年的根底上,到2023年底,使没有到达小康程度的16万农村人口降至10.24万,那么平均每年降低的百分率是多少?   (2)如果该方案实现2023年底该县农村小康进程接近图2-7-2中哪一年的水平?(假设该县人口2年内不变)   7. (2023•吉林一模)类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,假设AD=CD,AB=CB,那么四边形ABCD是筝形.   (1)在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.   (2)请你结合图①,写出一个筝形的判定方法(定义除外).   在四边形ABCD中,假设______,那么四边形ABCD是筝形.   (3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?假设存在,请直接写出点P的坐标;假设不存在,请说明理由.                8.先阅读以下材料,再解答后面的问题:   材料:23=8,此时,3叫做以2为底8的对数,记为.一般地,假设那么n叫做以为底b的对数,记为,那么4叫做以3为底81的对数,记为.   问题:(1)计算以下各对数的值: .   (2)观察(1)中三数4、16、64之间满足怎样的关系式?之间又满足怎样的关系式   (3)由(2)的结果,你能归纳出一个一般性的结论吗?      根据幂的运算法那么:以及对数的含义证明上述结论.   9. 某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形〞;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.   (1)写出判定扇形相似的一种方法:假设______,那么两个扇形相似;   (2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,那么它的弧长为______;   (3)如图1是一完全翻开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.               10. 阅读材料,如图(1)所示,在四边形ABCD中,对角线AC⊥BD,垂足为P,   求证:.   证明:   ∴ .                解答问题:   (1)上述证明得到的性质可表达为________.   (2):如图(2)所示,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3 cm,BC=7 cm,利用上述性质求梯形的面积.   11. 阅读下面的材料:   小明在学习中遇到这样一个问题:假设1≤x≤m,求二次函数的最大值.他画图研究后发现,和时的函数值相等,于是他认为需要对进行分类讨论.                      他的解答过程如下:   ∵二次函数的对称轴为直线,   ∴由对称性可知,和时的函数值相等.   ∴假设1≤m<5,那么时,的最大值为2;   假设m≥5,那么时,的最大值为.   请你参考小明的思路,解答以下问题:   (1)当≤x≤4时,二次函数的最大值为_______;   (2)假设p≤x≤2,求二次函数的最大值;   (3)假设t≤x≤t+2时,二次函数的最大值为31,那么的值为_______. 答案与解析 【答案与解析】  一、选择题   1.【答案】D;    【解析】令y=0得x2﹣(m﹣1)x﹣m=0,那么(x+1)(x﹣m)=0,解得:x1=﹣1,x2=m.        ∵m>0>﹣1,∴R(﹣1,0)、Q(m,0).∴方程由两个不相等的实数根.        ∴A、B正确,与要求不符;        当x=0,y=﹣m,∴P(0,﹣m).∴OP=PQ.∴△OPQ为等腰直角三角形.        ∴C正确,与要求不符;        ∵抛物线的对称轴为x=﹣=,m>0,∴x>﹣.        ∴D错误,与要求相符.   2.【答案】C;   二、填空题   3.【答案】, ∠A+∠B+∠C=180°,a、∠A、∠C或b、∠B、∠C,或   4.【答案】(1)①对;②对;(2)①③(3)正五边形,正十边形    【解析】解:(1)①=72°,   ∴正五边形是旋转对称图形,它有一个旋转角为144°,说法正确;        ②=90°,   ∴长方形是旋转对称图形,它有一个旋转角为180°,说法正确;       (2)①正三角形的最小旋转角为=120°;        ②正方形的最小旋转角为=90°;        ③正六边形的最小旋转角为=60°;        ④正八边形的最小旋转角为=45°;        那么有一个旋转角为120°的是①③.       (3)=72°,        那么正五边形是满足有一个旋转角为72°,是轴对称图形,但不是中心对称图形;        正十边形有一个旋转角为72°,既是轴对称图形,又是中心对称图形.   三、解答题   5.【答案与解析】   (1)换元;   (2)设,那么原方程可化为,      解得y1=3,y2=-2.      当y=3时,,所以.      因为不能为负,所以y=-2不符合题意,应舍去.所以原方程的解为,.   6.【答案与解析】   (1)设平均每年降低的百分率为.      据题意,得 16(1-x)2 =10.24,      (1-x)2 =0.64,(1-x)= ±0.8,x1=1.8(不合题意,舍去),x2=0.2.      即平均每年降低的百分率是20%.   (2)×100%=7 9.52%.      所以根据图2-7-2所示,如果该方案实现2023年底该县农村小康进程接近1996年全国农村小康进程的水平   7.【答案与解析】    解:(1)四边形ABFD是筝形.        理由:如图②,连接AF.                              在Rt△AFB和Rt△AFD中,,        ∴Rt△AFB≌Rt△AFD(HL),        ∴BF=DF,        又∵AB=AD,        ∴四边形ABFD是筝形.     (2)假设要四边形ABCD是筝形,只需△ABD≌△CBD即可.        当AD=CD,∠ADB=∠CDB时,        在△ABD和△CBD中,,        ∴△ABD≌△CBD(SAS),        ∴AB=CB,        ∴四边形ABCD是筝形.        故答案为:AD=CD,∠ADB=∠CDB.     (3)存在,理由如下:        过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,        过点G作GP2⊥OH与N交直线y=﹣x于点P2,连接HP2,如图③所示.                          ∵△OGH为等边三角形,        ∴HM为OG的垂直平分线,GN为OH的垂直平分线,且OG=GH=HO,        ∴P2O=P2H,P1O=P1G,        ∴四边形OHGP1为筝形,四边形OGHP2为筝形.        ∵△OGH为等边三角形,点G的坐标为(﹣1,0),        ∴点H的坐标为(,),点M的坐标为(,0),点N的坐标为(,).        ①∵H(,),M(,0),        ∴直线HM的解析式为x=,        令直线y=﹣x中的x=,那么y=﹣.        ∴P1的坐标为(,﹣);        ②设直线GN的解析式为y=kx+b,那么有,        ,解得:,        ∴直线GN的解析式为y=﹣x+.        联立,解得:,        故点P2的坐标为(﹣1,1).        综上可知:在直线l:y

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开