温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
TM_D_7300_
_18
Designation:D730018Standard Test Method forLaboratory Determination of Strength Properties of FrozenSoil at a Constant Rate of Strain1This standard is issued under the fixed designation D7300;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon()indicates an editorial change since the last revision or reapproval.INTRODUCTIONKnowledge of the stress-strain-strength behavior of frozen soil is of great importance for civilengineering construction in permafrost regions.The behavior of frozen soils under load is usually verydifferent from that of unfrozen soils because of the presence of ice and unfrozen water films.Inparticular,frozen soils are much more subject to creep and relaxation effects,and their behavior isstrongly affected by temperature change.In addition to creep,volumetric consolidation may alsodevelop in frozen soils having large unfrozen water or gas contents.As with unfrozen soil,the deformation and strength behavior of frozen soils depends oninterparticle friction,particle interlocking,and cohesion.In frozen soil,however,bonding of particlesby ice may be the dominant strength factor.The strength of ice in frozen soil is dependent on manyfactors,such as temperature,pressure,strain rate,grain size,crystal orientation,and density.In ice-richsoils(that is,soils where the ratio of the mass of ice contained in the pore spaces of frozen soil or rockmaterial,to the mass of solid particles in that material is high),frozen soil behavior under load issimilar to that of ice.In fact,for fine-grained soils,experimental data suggest that the ice matrixdominates when mineral volume fraction is less than about 50%.At low ice contents,however,(ice-poor soils),when interparticle forces begin to contribute to strength,the unfrozen water films playan important role,especially in fine-grained soils.Finally,for frozen sand,maximum strength isattained at full ice saturation and maximum dry density(1).21.Scope1.1 This test method covers the determination of thestrength behavior of cylindrical specimens of frozen soil,subjected to uniaxial compression under controlled rates ofstrain.It specifies the apparatus,instrumentation,and proce-dures for determining the stress-strain-time,or strength versusstrain rate relationships for frozen soils under deviatoric creepconditions.1.2 Values stated in SI units are to be regarded as thestandard.1.3 All observed and calculated values shall conform to theguidelines for significant digits and rounding established inPractice D6026.1.3.1 For the purposes of comparing measured or calculatedvalue(s)with specified limits,the measured or calculatedvalue(s)shall be rounded to the nearest decimal or significantdigits in the specified limits.1.3.2 The procedures used to specify how data are collected/recorded or calculated,in this standard are regarded as theindustry standard.In addition,they are representative of thesignificant digits that generally should be retained.The proce-dures used do not consider material variation,purpose forobtaining the data,special purpose studies,or any consider-ations for the users objectives;and it is common practice toincrease or reduce significant digits of reported data to becommensurate with these considerations.It is beyond the scopeof this standard to consider significant digits used in analyticalmethods for engineering design.1This test method is under the jurisdiction ofASTM Committee D18 on Soil andRock and is the direct responsibility of Subcommittee D18.19 on Frozen Soils andRock.Current edition approved Nov.15,2018.Published December 2018.Originallyapproved in 2006.Last previous edition approved in 2011 as D730011.DOI:10.1520/D7300-18.2The boldface numbers in parentheses refer to the list of references at the end ofthis standard.Copyright ASTM International,100 Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959.United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards,Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade(TBT)Committee.1 1.4 This standard does not purport to address all of thesafety concerns,if any,associated with its use.It is theresponsibility of the user of this standard to establish appro-priate safety,health,and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards,Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade(TBT)Committee.2.Referenced Documents2.1 ASTM Sta