温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年高
数学
14
突破
一轮
复习
必备
精品
高中数学
第四章平面解析几何初步
考纲导读
1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
2.会用二元一次不等式表示平面区域.
3.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用.
4.了解解析几何的根本思想,了解用坐标法研究几何问题的方法.
5.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.
简单的线性规划
直线的倾斜角和斜率
直线方程的四种形式
两条直线的位置关系
直 线
圆的方程
圆的一般方程
圆的参数方程
直线和圆
圆的标准方程
曲线和方程
知识网络
高考导航
在近几年的高考试题中,两点间的距离公式、中点坐标公式、直线方程的点斜式、斜截式、一般式、斜率公式及两条直线的位置关系,圆的方程及直线与圆、圆与圆的位置关系是考查的热点.但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,近年来,在高考中经常考查,但根本上以中易题出现.考查的数学思想方法,主要是数形结合、分类讨论、方程的思想和待定系数法等.
第1课时 直线的方程
根底过关
1.倾斜角:对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.
斜率:当直线的倾斜角α≠90°时,该直线的斜率即k=tanα;当直线的倾斜角等于90°时,直线的斜率不存在.
2.过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式 .假设x1=x2,那么直线的斜率不存在,此时直线的倾斜角为90°.
3.直线方程的五种形式
名称
方程
适用范围
斜截式
点斜式
两点式
截距式
一般式
典型例题
例1. 直线(2m2+m-3)x+(m2-m)y=4m-1.① 当m= 时,直线的倾斜角为45°.②当m= 时,直线在x轴上的截距为1.③ 当m= 时,直线在y轴上的截距为-.④ 当m= 时,直线与x轴平行.⑤当m= 时,直线过原点.
解:(1) -1 ⑵ 2或- ⑶ 或-2 ⑷- ⑸
变式训练1.〔1〕直线3y+x+2=0的倾斜角是 〔 〕
A.30° B.60° C.120° D.150°
〔2〕设直线的斜率k=2,P1〔3,5〕,P2〔x2,7〕,P〔-1,y3)是直线上的三点,那么x2,y3依次是 〔 〕
A.-3,4 B.2,-3 C.4,-3 D.4,3
〔3〕直线l1与l2关于x轴对称,l1的斜率是-,那么l2的斜率是 〔 〕
A. B.- C. D.-
〔4〕直线l经过两点〔1,-2〕,〔-3,4〕,那么该直线的方程是 .
解:〔1〕D.提示:直线的斜率即倾斜角的正切值是-.
〔2〕C.提示:用斜率计算公式.
〔3〕A.提示:两直线的斜率互为相反数.
〔4〕2y+3x+1=0.提示:用直线方程的两点式或点斜式
例2. 三点A〔1,-1〕,B〔3,3〕,C〔4,5〕.
求证:A、B、C三点在同一条直线上.
证明 方法一 ∵A〔1,-1〕,B〔3,3〕,C〔4,5〕,
∴kAB==2,kBC==2,∴kAB=kBC,
∴A、B、C三点共线.
方法二 ∵A〔1,-1〕,B〔3,3〕,C〔4,5〕,
∴|AB|=2,|BC|=,|AC|=3,
∴|AB|+|BC|=|AC|,即A、B、C三点共线.
方法三 ∵A〔1,-1〕,B〔3,3〕,C〔4,5〕,
∴=〔2,4〕,=〔1,2〕,∴=2.
又∵与有公共点B,∴A、B、C三点共线.
变式训练2. 设a,b,c是互不相等的三个实数,如果A〔a,a3〕、B〔b,b3〕、C〔c,c3〕在同一直线上,求证:a+b+c=0.
证明 ∵A、B、C三点共线,∴kAB=kAC,
∴,化简得a2+ab+b2=a2+ac+c2,
∴b2-c2+ab-ac=0,〔b-c〕〔a+b+c〕=0,
∵a、b、c互不相等,∴b-c≠0,∴a+b+c=0.
例3. 实数x,y满足y=x2-2x+2 (-1≤x≤1).
试求:的最大值与最小值.
解: 由的几何意义可知,它表示经过定点P〔-2,-3〕与曲线段AB上任一点〔x,y)的直线的斜率k,如图可知:kPA≤k≤kPB,
由可得:A〔1,1〕,B〔-1,5〕,
∴≤k≤8,
故的最大值为8,最小值为.
变式训练3. 假设实数x,y满足等式(x-2)2+y2=3,那么的最大值为 〔 〕
A. B. C. D.
答案D
例4. 定点P(6, 4)与直线l1:y=4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M.求使△OQM面积最小的直线l的方程.
解:Q点在l1: y=4x上,可设Q(x0,4x0),那么PQ的方程为:
令y=0,得:x=(x0>1),∴ M(,0)
∴ S△OQM=··4x0=10·
=10·[(x0-1)++2]≥40
当且仅当x0-1=即x0=2取等号,∴Q(2,8)
PQ的方程为:,∴x+y-10=0
变式训练4.直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点.
(1)当△AOB的面积最小时,求直线l的方程;
(2)当取最小值时,求直线l的方程.
解:设l:y-1=k(x-2)(k<0)
那么A(2-,0),B(0,1-2k)
①由S=(1-2k)(2-)=(4-4k-)
≥=4
当且仅当-4k=-,即k=-时等号成立
∴△AOB的面积最小值为4
此时l的方程是x+2y-4=0
②∵|MA|·|MB|=
==2≥4
当且仅当-k=-即k=-1时等号成立
此时l的方程为x+y-3=0
〔此题也可以先设截距式方程求解〕
小结归纳
1.直线方程是表述直线上任意一点M的坐标x与y之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.
2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等〔变形后除处〕.
3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.
4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,假设有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.
第2课时 直线与直线的位置关系
根底过关
〔一〕平面内两条直线的位置关系有三种________.
1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定
直线
条件
关系
l1:y=k1x+b1
l2:y=k2x+b2
l1:A1x+B1y+C1=0
l2:A2x+B2y+C2=0
平行
重合
相交
(垂直)
2.当直线平行于坐标轴时,可结合图形判定其位置关系.
〔二〕点到直线的距离、直线与直线的距离
1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.
2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,那么l1与l2的距离为 .
〔三〕两条直线的交角公式
假设直线l1的斜率为k1,l2的斜率为k2,那么
1.直线l1到l2的角θ满足 .
2.直线l1与l2所成的角(简称夹角)θ满足 .
〔四〕两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.
〔五〕五种常用的直线系方程.
① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+(A2x+B2y+C2)=0(不含l2).
② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).
③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.
④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).
⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).
典型例题
例1. 直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
〔1〕试判断l1与l2是否平行;
〔2〕l1⊥l2时,求a的值.
解〔1〕方法一 当a=1时,l1:x+2y+6=0,
l2:x=0,l1不平行于l2;
当a=0时,l1:y=-3,
l2:x-y-1=0,l1不平行于l2;
当a≠1且a≠0时,两直线可化为
l1:y=--3,l2:y=-(a+1),
l1∥l2,解得a=-1,
综上可知,a=-1时,l1∥l2,否那么l1与l2不平行.
方法二 由A1B2-A2B1=0,得a〔a-1〕-1×2=0,
由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,
∴l1∥l2
a=-1,
故当a=-1时,l1∥l2,否那么l1与l2不平行.
〔2〕方法一 当a=1时,l1:x+2y+6=0,l2:x=0,
l1与l2不垂直,故a=1不成立. 当a≠1时,l1:y=-x-3,
l2:y=-(a+1), 由·=-1a=.
方法二 由A1A2+B1B2=0,得a+2(a-1)=0a=.
变式训练1.假设直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?
解:当a=0时,直线l1斜率为0,l2斜率不存在,两直线显然垂直。
当a≠0时,分别将两直线均化为斜截式方程为:l1:y= - x+5,l2:y= - x+ 。
〔1〕当- ≠ - ,即a≠±2时,两直线相交。
〔2〕当- = - 且5≠ 时,即a=2且b≠10或a= -2且b≠-10时,两直线平行。
〔3〕由于方程(- )(- )= -1无解,故仅当a=0时,两直线垂直。
〔4〕当- =- 且5= 时,即a=2且b=10或a= -2且b=-10时,两直线重合
例2. 直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0的夹角为,求直线l的方程.
解:由解得l1和l2的交点坐标为(2,-1),因为直线l3的斜率为k3=,l与l3的夹角为,所以直线l的斜率存在. 设所求直线l的方程为y+1=k(x-2).
那么tan===1
k=或k=-,故所求直线l的方程为y+1=-(x-2)或y+1=(x-2)即7x+3y+11=0或3x-7y-13=0
变式训练2. 某人在一山坡P处观看对面山顶上的一座铁塔,如以下图,塔高BC=80〔米〕,塔所在的山高OB=220