温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西省
韩城市
分校
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )
A. B. C. D.
2. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )
A.75 B.65 C.55 D.45
3.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )
A. B. C. D.
4.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )
A.平方尺 B.平方尺
C.平方尺 D.平方尺
5.在直三棱柱中,己知,,,则异面直线与所成的角为( )
A. B. C. D.
6.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )
A. B. C. D.
7.已知点、.若点在函数的图象上,则使得的面积为的点的个数为( )
A. B. C. D.
8.已知,,,则,,的大小关系为( )
A. B. C. D.
9.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则( )
A.170 B.10 C.172 D.12
10.设,则复数的模等于( )
A. B. C. D.
11.已知函数满足=1,则等于( )
A.- B. C.- D.
12.若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知随机变量服从正态分布,,则__________.
14.的展开式中的常数项为__________.
15.已知平面向量与的夹角为,,,则________.
16.已知角的终边过点,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,已知平面与直线均垂直于所在平面,且.
(1)求证:平面;
(2)若,求与平面所成角的正弦值.
18.(12分)已知,函数.
(Ⅰ)若在区间上单调递增,求的值;
(Ⅱ)若恒成立,求的最大值.(参考数据:)
19.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.
图:设备改造前样本的频率分布直方图
表:设备改造后样本的频率分布表
质量指标值
频数
2
18
48
14
16
2
(1)求图中实数的值;
(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.
20.(12分)已知函数
(1)求单调区间和极值;
(2)若存在实数,使得,求证:
21.(12分)数列满足,是与的等差中项.
(1)证明:数列为等比数列,并求数列的通项公式;
(2)求数列的前项和.
22.(10分)记为数列的前项和,已知,等比数列满足,.
(1)求的通项公式;
(2)求的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.
【题目详解】
根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.
故选:D
【答案点睛】
本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.
2、B
【答案解析】
计算的和,然后除以,得到“5阶幻方”的幻和.
【题目详解】
依题意“5阶幻方”的幻和为,故选B.
【答案点睛】
本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.
3、D
【答案解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.
【题目详解】
函数(,)是上的奇函数,
则,所以.
又的图象关于直线对称可得,,即,,
由函数的单调区间知,,
即,
综上,则,
.
故选:D
【答案点睛】
本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.
4、A
【答案解析】
根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.
【题目详解】
由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点, 设球半径为,则,所以外接球的表面积,
故选:A.
【答案点睛】
本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.
5、C
【答案解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.
【题目详解】
连接,,如图:
又,则为异面直线与所成的角.
因为且三棱柱为直三棱柱,∴∴面,
∴,
又,,∴,
∴,解得.
故选C
【答案点睛】
考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.
6、C
【答案解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.
【题目详解】
由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.
设.则.
故异面直线EF与BD所成角的余弦值为.
故选:C
【答案点睛】
本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.
7、C
【答案解析】
设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.
【题目详解】
设点的坐标为,直线的方程为,即,
设点到直线的距离为,则,解得,
另一方面,由点到直线的距离公式得,
整理得或,,解得或或.
综上,满足条件的点共有三个.
故选:C.
【答案点睛】
本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.
8、D
【答案解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.
【题目详解】
依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.
【答案点睛】
本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.
9、D
【答案解析】
中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.
【题目详解】
由茎叶图知,甲的中位数为,故;
乙的平均数为,
解得,所以.
故选:D.
【答案点睛】
本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.
10、C
【答案解析】
利用复数的除法运算法则进行化简,再由复数模的定义求解即可.
【题目详解】
因为,
所以,
由复数模的定义知,.
故选:C
【答案点睛】
本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.
11、C
【答案解析】
设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.
【题目详解】
解:设的最小正周期为,因为,
所以,所以,
所以,
又,所以当时,,
,因为
,
整理得,因为,
,
,则
所以
.
故选:C.
【答案点睛】
本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.
12、B
【答案解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.
【题目详解】
由题可知.
所以
令,
得
令,得
故选:B
【答案点睛】
本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、0.22.
【答案解析】
正态曲线关于x=μ对称,根据对称性以及概率和为1求解即可。
【题目详解】
【答案点睛】
本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题.
14、31
【答案解析】
由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为: ,得解.
【题目详解】
解:,
则的展开式中的常数项为:
.
故答案为:31.
【答案点睛】
本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.
15、
【答案解析】
根据已知求出,利用向量的运算律,求出即可.
【题目详解】
由可得,
则,
所以.
故答案为:
【答案点睛】
本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.
16、
【答案解析】
由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值.
【题目详