分享
2023学年青岛第二十六中学高考仿真卷数学试卷(含解析).doc
下载文档

ID:16697

大小:1.92MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 青岛 第二 十六 中学 高考 仿真 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数为奇函数,则( ) A. B.1 C.2 D.3 2.要得到函数的图象,只需将函数图象上所有点的横坐标( ) A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度 B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度 C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度 D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度 3.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( ) A. B. C. D. 4.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( ) A. B. C.() D.() 5.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(  ) A. B. C. D. 6.已知中,,则( ) A.1 B. C. D. 7.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( ) A. B. C.2 D. 8.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( ) A. B. C. D. 9.函数的图象的大致形状是( ) A. B. C. D. 10.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( ) A. B. C. D. 11.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( ) A. B. C. D. 12.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于(  ) A. B. C.- D.- 二、填空题:本题共4小题,每小题5分,共20分。 13.已知数列满足:点在直线上,若使、、构成等比数列,则______ 14.如图是一个算法的伪代码,运行后输出的值为___________. 15.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______. 16.记为数列的前项和,若,则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下: “小爱同学”智能音箱 “天猫精灵”智能音箱 合计 男 45 60 105 女 55 40 95 合计 100 100 200 (1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人? (2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关? 附: 0.10 0.05 0.025 0.01 0.005 0.001 2.706 3.841 5.024 6.635 7.879 10.828 18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)设点,若直线与曲线相交于、两点,求的值 19.(12分)已知函数. (1)求不等式的解集; (2)若关于的不等式在上恒成立,求实数的取值范围. 20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系. (1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长; (2)设M、N是曲线C上的两点,若,求面积的最大值. 21.(12分)已知椭圆的离心率为,且过点. (Ⅰ)求椭圆的方程; (Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值. 22.(10分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6. (1)求椭圆的标准方程; (2)设直线的斜率分别为. ①若,求证:直线过定点; ②若直线过椭圆的右焦点,试判断是否为定值,并说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据整体的奇偶性和部分的奇偶性,判断出的值. 【题目详解】 依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以. 故选:B 【答案点睛】 本小题主要考查根据函数的奇偶性求参数值,属于基础题. 2、B 【答案解析】 分析:根据三角函数的图象关系进行判断即可. 详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到 再将得到的图象向左平移个单位长度得到 故选B. 点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键. 3、D 【答案解析】 由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解. 【题目详解】 由题,窗花的面积为,其中小正方形的面积为, 所以所求概率, 故选:D 【答案点睛】 本题考查几何概型的面积公式的应用,属于基础题. 4、B 【答案解析】 如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案. 【题目详解】 如图所示:连接,根据垂直平分线知, 故,故轨迹为双曲线, ,,,故,故轨迹方程为. 故选:. 【答案点睛】 本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键. 5、D 【答案解析】 求得定点M的轨迹方程可得,解得a,b即可. 【题目详解】 设A(-a,0),B(a,0),M(x,y).∵动点M满足=2, 则 =2,化简得. ∵△MAB面积的最大值为8,△MCD面积的最小值为1, ∴ ,解得, ∴椭圆的离心率为. 故选D. 【答案点睛】 本题考查了椭圆离心率,动点轨迹,属于中档题. 6、C 【答案解析】 以为基底,将用基底表示,根据向量数量积的运算律,即可求解. 【题目详解】 , , . 故选:C. 【答案点睛】 本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题. 7、C 【答案解析】 由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可 【题目详解】 因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故. 故选:C 【答案点睛】 本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 8、A 【答案解析】 联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可. 【题目详解】 联立方程,解方程可得或, 不妨设A(0,a),B(-b,0),由题意可知,·=0, 因为,, 由平面向量垂直的坐标表示可得,, 因为,所以a2-c2=ac, 两边同时除以可得,, 解得e=或(舍去), 所以该椭圆的离心率为. 故选:A 【答案点睛】 本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型. 9、B 【答案解析】 根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项. 【题目详解】 函数 易知为奇函数,故排除D. 又,易知当时,; 又当时,, 故在上单调递增,所以, 综上,时,,即单调递增. 又为奇函数,所以在上单调递增,故排除A,C. 故选:B 【答案点睛】 本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题. 10、B 【答案解析】 根据程序框图列举出程序的每一步,即可得出输出结果. 【题目详解】 输入,不成立,是偶数成立,则,; 不成立,是偶数不成立,则,; 不成立,是偶数成立,则,; 不成立,是偶数成立,则,; 不成立,是偶数成立,则,; 不成立,是偶数成立,则,; 成立,跳出循环,输出i的值为. 故选:B. 【答案点睛】 本题考查利用程序框图计算输出结果,考查计算能力,属于基础题. 11、D 【答案解析】 根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论. 【题目详解】 依题意有, ① , ② ①②得,又因为, 所以,在上单调递增, 所以函数的单调递增区间为. 故选:D. 【答案点睛】 本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题. 12、A 【答案解析】 分析:计算,由z1,是实数得,从而得解. 详解:复数z1=3+4i,z2=a+i, . 所以z1,是实数, 所以,即. 故选A. 点睛:本题主要考查了复数共轭的概念,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、13 【答案解析】 根据点在直线上可求得,由等比中项的定义可构造方程求得结果. 【题目详解】 在上,, 成等比数列,,即,解得:. 故答案为:. 【答案点睛】 本题考查根据三项

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开