温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
贵州省
百校大
联考
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为( )
A. B.40 C.16 D.
2.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )
A.100 B.1000 C.90 D.90
3.当时,函数的图象大致是( )
A. B.
C. D.
4.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )
A.3 B. C.4 D.
5.函数(或)的图象大致是( )
A. B. C. D.
6.已知函数,若,,,则a,b,c的大小关系是( )
A. B. C. D.
7.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )
A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为
C. D.三棱锥P-ABC的侧面积为
8.设,满足约束条件,若的最大值为,则的展开式中项的系数为( )
A.60 B.80 C.90 D.120
9.已知复数满足,则( )
A. B. C. D.
10.已知平面,,直线满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
11.已知 ,,且是的充分不必要条件,则的取值范围是( )
A. B. C. D.
12.已知i是虚数单位,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若双曲线的离心率为,则双曲线的渐近线方程为______.
14.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.
15.设满足约束条件,则的取值范围是______.
16.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知矩阵,且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.
18.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.
为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.
(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)
(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;
(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间
1月25日
1月26日
1月27日
1月28日
1月29日
累计确诊人数的真实数据
1975
2744
4515
5974
7111
(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?
(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?
附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:其中,.
5.5
390
19
385
7640
31525
154700
100
150
225
338
507
19.(12分)已知函数,.
(Ⅰ)求的最小正周期;
(Ⅱ)求在上的最小值和最大值.
20.(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;
平均车速超过的人数
平均车速不超过的人数
合计
男性驾驶员
女性驾驶员
合计
(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.
参考公式:其中
临界值表:
0.050
0.025
0.010
0.005
0.001
3.841
5.024
6.635
7.879
10.828
21.(12分)是数列的前项和,且.
(1)求数列的通项公式;
(2)若,求数列中最小的项.
22.(10分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.
(1)求线段的长;
(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.
【题目详解】
如图所示:过分别作于,于.
,则,
根据得到:,即,
根据得到:,即,
解得,,故.
故选:.
【答案点睛】
本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.
2、A
【答案解析】
利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解
【题目详解】
由题意,支出在(单位:元)的同学有34人
由频率分布直方图可知,支出在的同学的频率为
.
故选:A
【答案点睛】
本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.
3、B
【答案解析】
由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.
【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.
4、B
【答案解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.
【题目详解】
由题意可知:,
所以,,
所以,所以,
又因为,所以,
所以.
故选:B.
【答案点睛】
本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.
5、A
【答案解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.
【题目详解】
分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,
当时,,排除D,
故选:A.
【答案点睛】
本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.
6、D
【答案解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.
【题目详解】
解:根据题意,函数,其导数函数,
则有在上恒成立,
则在上为增函数;
又由,
则;
故选:.
【答案点睛】
本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.
7、C
【答案解析】
根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.
【题目详解】
解:根据三视图,可得三棱锥P-ABC的直观图如图所示,
其中D为AB的中点,底面ABC.
所以三棱锥P-ABC的体积为,
,,,
,、不可能垂直,
即不可能两两垂直,
,.
三棱锥P-ABC的侧面积为.
故正确的为C.
故选:C.
【答案点睛】
本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.
8、B
【答案解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.
【题目详解】
如图所示:画出可行域和目标函数,
,即,故表示直线与截距的倍,
根据图像知:当时,的最大值为,故.
展开式的通项为:,
取得到项的系数为:.
故选:.
【答案点睛】
本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.
9、A
【答案解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.
【题目详解】
由题可知:
由,所以
所以
故选:A
【答案点睛】
本题主要考查复数的运算,考验计算,属基础题.
10、A
【答案解析】
,是相交平面,直线平面,则“” “”,反之,直线满足,则或//或平面,即可判断出结论.
【题目详解】
解:已知直线平面,则“” “”,
反之,直线满足,则或//或平面,
“”是“”的充分不必要条件.
故选:A.
【答案点睛】
本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.
11、D
【答案解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.
【题目详解】
由题意知:可化简为,,
所以中变量取值的集合是中变量取值集合的真子集,所以.
【答案点睛】
利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.
12、D
【答案解析】
利用复数的运算法则即可化简得出结果
【题目详解】
故选
【答案点睛】
本题考查了复数代数形式的乘除运算,属于基础题。
二、填