温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
贵州省
湄潭县
中学
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,若,则( )
A. B. C.-8 D.8
2.已知复数满足,其中为虚数单位,则( ).
A. B. C. D.
3.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )
A.或 B.或 C.或 D.或
4.下列图形中,不是三棱柱展开图的是( )
A. B. C. D.
5.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )
A. B. C. D.
6.设,满足约束条件,则的最大值是( )
A. B. C. D.
7.已知正项等比数列中,存在两项,使得,,则的最小值是( )
A. B. C. D.
8.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为( )
A. B. C. D.
9.等比数列的前项和为,若,,,,则( )
A. B. C. D.
10.已知实数满足,则的最小值为( )
A. B. C. D.
11.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为( )
A.800 B.1000 C.1200 D.1600
12.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,角,,的对边长分别为,,,满足,,则的面积为__.
14.平面向量与的夹角为,,,则__________.
15.已知函数则______.
16.(5分)已知,且,则的值是____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知中,内角所对边分别是其中.
(1)若角为锐角,且,求的值;
(2)设,求的取值范围.
18.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
19.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.
(Ⅰ)求sinB的值;
(Ⅱ)求sin(2B+)的值.
20.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.
(1)求曲线的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.
21.(12分)已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
22.(10分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.
(1)求证:平面平面;
(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
先求出向量,的坐标,然后由可求出参数的值.
【题目详解】
由向量,,
则,
,
又,则,解得.
故选:B
【答案点睛】
本题考查向量的坐标运算和模长的运算,属于基础题.
2、A
【答案解析】
先化简求出,即可求得答案.
【题目详解】
因为,
所以
所以
故选:A
【答案点睛】
此题考查复数的基本运算,注意计算的准确度,属于简单题目.
3、D
【答案解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.
【题目详解】
过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,
则,
为双曲线上的点,则,即,得,,
又,在中,由余弦定理可得,
整理得,即,,解得或.
故选:D.
【答案点睛】
本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.
4、C
【答案解析】
根据三棱柱的展开图的可能情况选出选项.
【题目详解】
由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.
故选:C
【答案点睛】
本小题主要考查三棱柱展开图的判断,属于基础题.
5、A
【答案解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.
【题目详解】
设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.
故选:A
【答案点睛】
本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.
6、D
【答案解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.
【题目详解】
作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.
由得:,
故选:D
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.
7、C
【答案解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.
【题目详解】
,,或(舍).
,,.
当,时;
当,时;
当,时,,所以最小值为.
故选:C.
【答案点睛】
本题考查等比数列通项公式基本量的计算及最小值,属于基础题.
8、B
【答案解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.
【题目详解】
由题意易得平面,
所以,
当且仅当时等号成立,
又阳马体积的最大值为,
所以,
所以堑堵的外接球的半径,
所以外接球的体积,
故选:B
【答案点睛】
本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.
9、D
【答案解析】
试题分析:由于在等比数列中,由可得:,
又因为,
所以有:是方程的二实根,又,,所以,
故解得:,从而公比;
那么,
故选D.
考点:等比数列.
10、A
【答案解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.
【题目详解】
解:因为满足,
则
,
当且仅当时取等号,
故选:.
【答案点睛】
本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.
11、B
【答案解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.
【题目详解】
由频率和为1,得,解得,
所以成绩在内的频率,
所以成绩在内的学生人数.
故选:B
【答案点睛】
本题主要考查频率直方图的应用,属基础题.
12、D
【答案解析】
可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值.
【题目详解】
可设的内切圆的圆心为,为切点,且为中点,,
设,,则,且有,解得,,
设,,设圆切于点,则,,
由,解得,,
,所以为等边三角形,
所以,,解得.
因此,该椭圆的离心率为.
故选:D.
【答案点睛】
本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、.
【答案解析】
由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.
【题目详解】
解:把看成关于的二次方程,
则,即,
即为,
化为,而,
则,
由于,可得,
可得,即,
代入方程可得,,
,
由余弦定理可得,,
解得:(负的舍去),
.
故答案为.
【答案点睛】
本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.
14、
【答案解析】
由平面向量模的计算公式,直接计算即可.
【题目详解】
因为平面向量与的夹角为,所以,
所以;
故答案为
【答案点睛】
本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.
15、
【答案解析】
先由解析式求得(2),再求(2).
【题目详解】
(2),,
所以(2),
故答案为:
【答案点睛】
本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.
16、
【答案解析】
由于,且,则,得,则.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;
(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.
【题目详解】
(1)由正弦定理,得:
,且为锐角
(2)
【答案点睛】
本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.
18、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.
【答案解析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.
(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.
【题目详解】
解:(1)设椭圆的焦半距为c,则由题设,得,解得,
所以,故所求椭圆C的方程为
(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:
设点,,将直线的方程代入,
并整理,得.(*)
则,
因为以线段为直径的圆恰好经过坐标原点O,所以,即.
又,于是,
解得,
经检验知:此时(*)式的,符合题意.
所以当时,以线段为