温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
福州市
重点中学
高考
数学
模拟
密押卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,,是非零向量.若,则( )
A. B. C. D.
2.设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
3.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A.2017年第一季度GDP增速由高到低排位第5的是浙江省.
B.与去年同期相比,2017年第一季度的GDP总量实现了增长.
C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D.去年同期河南省的GDP总量不超过4000亿元.
4.已知集合,则( )
A. B. C. D.
5.集合的子集的个数是( )
A.2 B.3 C.4 D.8
6.执行如图所示的程序框图,若输入,,则输出的( )
A.4 B.5 C.6 D.7
7.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )
A. B.
C. D.
8.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P2
9.已知集合,,则=( )
A. B. C. D.
10.函数的图象为C,以下结论中正确的是( )
①图象C关于直线对称;
②图象C关于点对称;
③由y =2sin2x的图象向右平移个单位长度可以得到图象C.
A.① B.①② C.②③ D.①②③
11.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )
A.3 B. C.6 D.
12.已知等比数列满足,,等差数列中,为数列的前项和,则( )
A.36 B.72 C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.
14.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种; ______;
15.实数满足,则的最大值为_____.
16.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列的前项和为,且满足().
(1)求数列的通项公式;
(2)设(),数列的前项和.若对恒成立,求实数,的值.
18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)设点,直线与曲线相交于,,求的值.
19.(12分)设函数.
(1)当时,求不等式的解集;
(2)若存在,使得不等式对一切恒成立,求实数的取值范围.
20.(12分)已知等比数列中,,是和的等差中项.
(1)求数列的通项公式;
(2)记,求数列的前项和.
21.(12分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
22.(10分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.
(1)求曲线的方程;
(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.
考点:平面向量数量积.
【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.
2、B
【答案解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可
【题目详解】
解不等式可得,
解绝对值不等式可得,
由于为的子集,
据此可知“”是“”的必要不充分条件.
故选:B
【答案点睛】
本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.
3、C
【答案解析】
利用图表中的数据进行分析即可求解.
【题目详解】
对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;
对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;
对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;
对于D选项:去年同期河南省的GDP总量,故D正确.
故选:C.
【答案点睛】
本题考查了图表分析,学生的分析能力,推理能力,属于基础题.
4、B
【答案解析】
计算,再计算交集得到答案
【题目详解】
,表示偶数,
故.
故选:.
【答案点睛】
本题考查了集合的交集,意在考查学生的计算能力.
5、D
【答案解析】
先确定集合中元素的个数,再得子集个数.
【题目详解】
由题意,有三个元素,其子集有8个.
故选:D.
【答案点睛】
本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.
6、C
【答案解析】
根据程序框图程序运算即可得.
【题目详解】
依程序运算可得:
,
故选:C
【答案点睛】
本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.
7、C
【答案解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.
【题目详解】
最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.
【答案点睛】
本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.
8、C
【答案解析】
将三辆车的出车可能顺序一一列出,找出符合条件的即可.
【题目详解】
三辆车的出车顺序可能为:123、132、213、231、312、321
方案一坐车可能:132、213、231,所以,P1=;
方案二坐车可能:312、321,所以,P1=;
所以P1+P2=
故选C.
【答案点睛】
本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.
9、C
【答案解析】
计算,,再计算交集得到答案.
【题目详解】
,,故.
故选:.
【答案点睛】
本题考查了交集运算,意在考查学生的计算能力.
10、B
【答案解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.
【题目详解】
因为,
又,所以①正确.
,所以②正确.
将的图象向右平移个单位长度,得,所以③错误.
所以①②正确,③错误.
故选:B
【答案点睛】
本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.
11、A
【答案解析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.
【题目详解】
由题可知:双曲线的渐近线方程为
取右焦点,一条渐近线
则点到的距离为,由
所以,则
又
所以
所以焦距为:
故选:A
【答案点睛】
本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.
12、A
【答案解析】
根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.
【题目详解】
等比数列满足,,所以,又,所以,由等差数列的性质可得.
故选:A
【答案点睛】
本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、2
【答案解析】
利用AB中有且只有一个元素,可得,可求实数a的值.
【题目详解】
由题意AB中有且只有一个元素,所以,即.
故答案为:.
【答案点睛】
本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.
14、36 ;1.
【答案解析】
的可能取值为0,1,2,3,对应的排法有:.分别求出,,,,由此能求出.
【题目详解】
解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,
则的可能取值为0,1,2,3,
对应的排法有:.
∴对应的排法有36种;
,
,
,
,
∴
故答案为:36;1.
【答案点睛】
本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.
15、.
【答案解析】
画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.
【题目详解】
解:作出可行域,如图所示,
则当直线过点时直线的截距最大,z取最大值.
由同理
,,
取最大值.
故答案为: .
【答案点睛】
本题考查线性规划的线性目标函数的最优解问题. 线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.
16、
【答案解析】
由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.
【题目详解】
由PA⊥平面ABC,得PA⊥BC,
又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,
又PB⊥AE,则AE⊥平面PBC,
于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,
∴△AEF、△PEF均为直角三角形,由已