温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
重庆
中学
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下关于的命题,正确的是
A.函数在区间上单调递增
B.直线需是函数图象的一条对称轴
C.点是函数图象的一个对称中心
D.将函数图象向左平移需个单位,可得到的图象
2.已知集合,,则集合的真子集的个数是( )
A.8 B.7 C.4 D.3
3.已知,都是偶函数,且在上单调递增,设函数,若,则( )
A.且
B.且
C.且
D.且
4.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为
A. B. C. D.
5.若是定义域为的奇函数,且,则
A.的值域为 B.为周期函数,且6为其一个周期
C.的图像关于对称 D.函数的零点有无穷多个
6.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.已知函数,若有2个零点,则实数的取值范围为( )
A. B. C. D.
8.已知函数在上的值域为,则实数的取值范围为( )
A. B. C. D.
9.已知函数,若,则下列不等关系正确的是( )
A. B.
C. D.
10.在等差数列中,若为前项和,,则的值是( )
A.156 B.124 C.136 D.180
11.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为( )
A.8 B.16 C. D.
12.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:
根据频率分布直方图,可知这部分男生的身高的中位数的估计值为
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为____.
14.函数的定义域为_____________.
15.在等差数列()中,若,,则的值是______.
16.已知,则_____。
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
0.050
0.010
0.001
3.841
6.635
10.828
18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.
(1)求曲线的参数方程;
(2)求面积的最大值.
19.(12分)已知函数.
(1)当时.
①求函数在处的切线方程;
②定义其中,求;
(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
20.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.
组别
频数
(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元
概率
现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:,若,则,,.
21.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C相交于两点A,B,求线段的长.
22.(10分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.
【题目详解】
A选项,函数先增后减,错误
B选项,不是函数对称轴,错误
C选项,,不是对称中心,错误
D选项,图象向左平移需个单位得到,正确
故答案选D
【答案点睛】
本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.
2、D
【答案解析】
转化条件得,利用元素个数为n的集合真子集个数为个即可得解.
【题目详解】
由题意得,
,集合的真子集的个数为个.
故选:D.
【答案点睛】
本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.
3、A
【答案解析】
试题分析:由题意得,,
∴,,
∵,∴,∴,
∴若:,,∴,
若:,,∴,
若:,,∴,
综上可知,同理可知,故选A.
考点:1.函数的性质;2.分类讨论的数学思想.
【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.
4、B
【答案解析】
考点:程序框图.
分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.
解:程序在运行过程中各变量的值如下表示:
S i 是否继续循环
循环前 1 1/
第一圈3 2 是
第二圈7 3 是
第三圈15 4 是
第四圈31 5 否
故最后当i<5时退出,
故选B.
5、D
【答案解析】
运用函数的奇偶性定义,周期性定义,根据表达式判断即可.
【题目详解】
是定义域为的奇函数,则,,
又,,
即是以4为周期的函数,,
所以函数的零点有无穷多个;
因为,,令,则,
即,所以的图象关于对称,
由题意无法求出的值域,
所以本题答案为D.
【答案点睛】
本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.
6、C
【答案解析】
根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
点不在直线、上,
若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,
若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:
若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立
则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.
7、C
【答案解析】
令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.
【题目详解】
令,
可得,
要使得有两个实数解,即和有两个交点,
,
令,
可得,
当时,,函数在上单调递增;
当时,,函数在上单调递减.
当时,,
若直线和有两个交点,则.
实数的取值范围是.
故选:C.
【答案点睛】
本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.
8、A
【答案解析】
将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.
【题目详解】
当时,
又,,
由在上的值域为
解得:
本题正确选项:
【答案点睛】
本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.
9、B
【答案解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.
【题目详解】
∵在R上单调递增,且,∴.
∵的符号无法判断,故与,与的大小不确定,
对A,当时,,故A错误;
对C,当时,,故C错误;
对D,当时,,故D错误;
对B,对,则,故B正确.
故选:B.
【答案点睛】
本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.
10、A
【答案解析】
因为,可得,根据等差数列前项和,即可求得答案.
【题目详解】
,
,
.
故选:A.
【答案点睛】
本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.
11、D
【答案解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.
【题目详解】
根据题意,画出几何关系如下图所示:
设四边形的内切圆半径为,双曲线半焦距为,
则
所以,
四边形的内切圆面积为,
则,解得,
则,
即
故由基本不等式可得,即,
当且仅当时等号成立.
故焦距的最小值为.
故选:D
【答案点睛】
本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.
12、C
【答案解析】
由题可得,解得,