温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西省
延安市
宝塔
中高
冲刺
数学模拟
试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,,若方程恰有三个不相等的实根,则的取值范围为( )
A. B.
C. D.
2.已知为虚数单位,复数满足,则复数在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()
A. B. C. D.
4.某几何体的三视图如图所示,则此几何体的体积为( )
A. B.1 C. D.
5.给出下列三个命题:
①“”的否定;
②在中,“”是“”的充要条件;
③将函数的图象向左平移个单位长度,得到函数的图象.
其中假命题的个数是( )
A.0 B.1 C.2 D.3
6.已知非零向量满足,,且与的夹角为,则( )
A.6 B. C. D.3
7.复数的模为( ).
A. B.1 C.2 D.
8.已知当,,时,,则以下判断正确的是
A. B.
C. D.与的大小关系不确定
9.已知等差数列的前项和为,若,,则数列的公差为( )
A. B. C. D.
10.等差数列的前项和为,若,,则数列的公差为( )
A.-2 B.2 C.4 D.7
11.已知复数,则的虚部是( )
A. B. C. D.1
12.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )
A.7 B.15 C.31 D.63
二、填空题:本题共4小题,每小题5分,共20分。
13.已知平面向量与的夹角为,,,则________.
14.在中,角、、所对的边分别为、、,若,,则的取值范围是_____.
15.若函数 (R,)满足,且的最小值等于,则ω的值为___________.
16.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.
(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?
城镇居民
农村居民
合计
经常阅读
100
30
不经常阅读
合计
200
(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.
附:,其中.
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
18.(12分)已知函数.
(1)讨论的单调性并指出相应单调区间;
(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.
19.(12分)如图,在四面体中,.
(1)求证:平面平面;
(2)若,求四面体的体积.
20.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:
组别
频数
5
30
40
50
45
20
10
(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.
(参考数据:;;.)
21.(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为、、、、、、、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.
举例说明.
某同学化学学科原始分为65分,该学科等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属等级.而等级的转换分区间为61~70,那么该同学化学学科的转换分为:
设该同学化学科的转换等级分为,,求得.
四舍五入后该同学化学学科赋分成绩为67.
(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.
(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为82~93,求小明转换后的物理成绩;
(ii)求物理原始分在区间的人数;
(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.
(附:若随机变量,则,,)
22.(10分)设数列满足,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.
【题目详解】
由题意知方程在上恰有三个不相等的实根,
即,①.
因为,①式两边同除以,得.
所以方程有三个不等的正实根.
记,,则上述方程转化为.
即,所以或.
因为,当时,,所以在,上单调递增,且时,.
当时,,在上单调递减,且时,.
所以当时,取最大值,当,有一根.
所以恰有两个不相等的实根,所以.
故选:B.
【答案点睛】
本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.
2、B
【答案解析】
求出复数,得出其对应点的坐标,确定所在象限.
【题目详解】
由题意,对应点坐标为 ,在第二象限.
故选:B.
【答案点睛】
本题考查复数的几何意义,考查复数的除法运算,属于基础题.
3、A
【答案解析】
由直线过椭圆的左焦点,得到左焦点为,且,
再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.
【题目详解】
由题意,直线经过椭圆的左焦点,令,解得,
所以,即椭圆的左焦点为,且 ①
直线交轴于,所以,,
因为,所以,所以,
又由点在椭圆上,得 ②
由,可得,解得,
所以,
所以椭圆的离心率为.
故选A.
【答案点睛】
本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).
4、C
【答案解析】
该几何体为三棱锥,其直观图如图所示,体积.故选.
5、C
【答案解析】
结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.
【题目详解】
对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;
对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;
对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.
故假命题有①③.
故选:C
【答案点睛】
本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.
6、D
【答案解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.
【题目详解】
解:非零向量,满足,可知两个向量垂直,,且与的夹角为,
说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.
故选:.
【答案点睛】
本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.
7、D
【答案解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.
【题目详解】
解:,
复数的模为.
故选:D.
【答案点睛】
本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.
8、C
【答案解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.
【题目详解】
解:设,
则,
即为增函数,
又,,,,
即,
所以,
所以.
故选:C.
【答案点睛】
本题考查了函数的增减性及导数的应用,属中档题.
9、D
【答案解析】
根据等差数列公式直接计算得到答案.
【题目详解】
依题意,,故,故,故,故选:D.
【答案点睛】
本题考查了等差数列的计算,意在考查学生的计算能力.
10、B
【答案解析】
在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.
【题目详解】
在等差数列的前项和为,则
则
故选:B
【答案点睛】
本题考查等差数列中求由已知关系求公差,属于基础题.
11、C
【答案解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.
【题目详解】
,,所以的虚部为.
故选:C
【答案点睛】
本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.
12、B
【答案解析】
试题分析:由程序框图可知:①,;②,;③,;④,;
⑤,. 第⑤步后输出,此时,则的最大值为15,故选B.
考点:程序