分享
2023学年滨海新区高考冲刺模拟数学试题(含解析).doc
下载文档

ID:16503

大小:1.89MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 滨海新区 高考 冲刺 模拟 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为(  ) A. B. C. D. 2.下列四个图象可能是函数图象的是( ) A. B. C. D. 3.设全集,集合,,则( ) A. B. C. D. 4.在中,“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.已知,则( ) A. B. C. D.2 6.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( ) A. B. C. D. 7.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( ) A. B. C.2 D.4 8.已知中,角、所对的边分别是,,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分必要条件 9.已知,,那么是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 10.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( ) A. B. C. D. 11.若复数z满足,则( ) A. B. C. D. 12.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知一组数据,1,0,,的方差为10,则________ 14.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率.现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为________. 15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____ 16.已知函数,若恒成立,则的取值范围是___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程: (1)求曲线的极坐标方程; (2)若直线与曲线交于、两点,求的最大值. 18.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元. 年龄 (单位:岁) 保费 (单位:元) (1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值; (2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算? 19.(12分)已知函数,曲线在点处的切线方程为. (1)求,的值; (2)证明函数存在唯一的极大值点,且. 20.(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点. (1)证明:点在轴的右侧; (2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率 21.(12分)设函数. (1)当时,解不等式; (2)设,且当时,不等式有解,求实数的取值范围. 22.(10分)已知函数,. (1)讨论的单调性; (2)若存在两个极值点,,证明:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率. 【题目详解】 派四位专家对三个县区进行调研,每个县区至少派一位专家 基本事件总数: 甲,乙两位专家派遣至同一县区包含的基本事件个数: 甲,乙两位专家派遣至同一县区的概率为: 本题正确选项: 【答案点睛】 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 2、C 【答案解析】 首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解. 【题目详解】 ∵的定义域为, 其图象可由的图象沿轴向左平移1个单位而得到, ∵为奇函数,图象关于原点对称, ∴的图象关于点成中心对称. 可排除A、D项. 当时,,∴B项不正确. 故选:C 【答案点睛】 本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题. 3、D 【答案解析】 求解不等式,得到集合A,B,利用交集、补集运算即得解 【题目详解】 由于 故集合 或 故集合 故选:D 【答案点睛】 本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题. 4、C 【答案解析】 由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件. 【题目详解】 余弦函数在区间上单调递减,且,, 由,可得,,由正弦定理可得. 因此,“”是“”的充分必要条件. 故选:C. 【答案点睛】 本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题. 5、B 【答案解析】 结合求得的值,由此化简所求表达式,求得表达式的值. 【题目详解】 由,以及,解得. . 故选:B 【答案点睛】 本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题. 6、B 【答案解析】 由题可知,,再结合双曲线第一定义,可得,对有, 即,解得,再对,由勾股定理可得,化简即可求解 【题目详解】 如图,因为,所以.因为所以. 在中,,即, 得,则.在中,由得. 故选:B 【答案点睛】 本题考查双曲线的离心率求法,几何性质的应用,属于中档题 7、A 【答案解析】 由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率. 【题目详解】 解:设双曲线的半个焦距为,由题意 又,则,,,所以离心率, 故选:A. 【答案点睛】 本题考查双曲线的简单几何性质,属于基础题 8、D 【答案解析】 由大边对大角定理结合充分条件和必要条件的定义判断即可. 【题目详解】 中,角、所对的边分别是、,由大边对大角定理知“”“”, “”“”. 因此,“” 是“”的充分必要条件. 故选:D. 【答案点睛】 本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题. 9、B 【答案解析】 由,可得,解出即可判断出结论. 【题目详解】 解:因为,且 . ,解得. 是的必要不充分条件. 故选:. 【答案点睛】 本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. 10、D 【答案解析】 根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可. 【题目详解】 由条件可得 函数关于直线对称; 在,上单调递增,且在时使得; 又 ,,所以选项成立; ,比离对称轴远, 可得,选项成立; ,,可知比离对称轴远 ,选项成立; ,符号不定,,无法比较大小, 不一定成立. 故选:. 【答案点睛】 本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 11、D 【答案解析】 先化简得再求得解. 【题目详解】 所以. 故选:D 【答案点睛】 本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平. 12、D 【答案解析】 先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围. 【题目详解】 由已知得,则. 因为,数列是单调递增数列, 所以,则, 化简得,所以. 故选:D. 【答案点睛】 本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题. 二、填空题:本题共4小题,每小题5分,共20分。 13、7或 【答案解析】 依据方差公式列出方程,解出即可. 【题目详解】 ,1,0,,的平均数为, 所以 解得或. 【答案点睛】 本题主要考查方差公式的应用. 14、 【答案解析】 求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可. 【题目详解】 半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形, ∴该正十二边形的面积为, 根据几何概型公式,该点取自其内接正十二边形的概率为, 故答案为:. 【答案点睛】 本小题主要考查面积型几何概型的计算,属于基础题. 15、80 211 【答案解析】 由,利用二项式定理即可得,分别令、后,作差即可得. 【题目详解】 由题意,则, 令,得, 令,得, 故. 故答案为:80,211. 【答案点睛】 本题考查了二项式定理的应用,属于中档题. 16、 【答案解析】 求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。 【题目详解】 因为,所以,因为,所以. 当,即时,,则在上单调递增,从而,故符合题意; 当,即时,因为在上单调递增,且,所以存在唯一的,使得. 令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是. 故答案为:. 【答案点睛】 本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)10 【答案解析】 (1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程; (2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即可求解. 【题目详解】 (1)由题意,曲线C的参数方程为, 消去参数,可得曲线C的普通方程为,即, 又由, 代入可得曲线C的极坐标方程为. (2)将代入, 得,即

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开