分享
2023学年福建省三明市普通高中高考冲刺模拟数学试题(含解析).doc
下载文档

ID:16499

大小:2.58MB

页数:25页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 福建省 三明市 普通高中 高考 冲刺 模拟 数学试题 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数,则下列判断错误的是( ) A.的最小正周期为 B.的值域为 C.的图象关于直线对称 D.的图象关于点对称 2. 下列与的终边相同的角的表达式中正确的是(  ) A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z) C.k·360°-315°(k∈Z) D.kπ+ (k∈Z) 3.已知某几何体的三视图如右图所示,则该几何体的体积为( ) A.3 B. C. D. 4.将函数的图像向左平移个单位得到函数的图像,则的最小值为( ) A. B. C. D. 5.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种. A.360 B.240 C.150 D.120 6.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( ) A.9 B.7 C. D. 7.已知复数z满足,则在复平面上对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是( ) A. B. C. D. 9.设全集,集合,则=( ) A. B. C. D. 10.已知中,角、所对的边分别是,,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分必要条件 11.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( ) A. B. C. D. 12.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________. 14.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________. 15.三棱锥中,点是斜边上一点.给出下列四个命题: ①若平面,则三棱锥的四个面都是直角三角形; ②若,,,平面,则三棱锥的外接球体积为; ③若,,,在平面上的射影是内心,则三棱锥的体积为2; ④若,,,平面,则直线与平面所成的最大角为. 其中正确命题的序号是__________.(把你认为正确命题的序号都填上) 16.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶): 若分数不低于95分,则称该员工的成绩为“优秀”. (1)从这20人中任取3人,求恰有1人成绩“优秀”的概率; (2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题. 组别 分组 频数 频率 1 2 3 4 ①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表); ②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望. 18.(12分)已知椭圆的短轴长为,离心率,其右焦点为. (1)求椭圆的方程; (2)过作夹角为的两条直线分别交椭圆于和,求的取值范围. 19.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点 (1)当直线的方程为时,求抛物线的方程; (2)当正数变化时,记分别为的面积,求的最小值. 20.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为. (1)求曲线的极坐标方程和曲线的直角坐标方程; (2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值. 21.(12分)在平面直角坐标系中,已知向量,,其中. (1)求的值; (2)若,且,求的值. 22.(10分)如图,在四棱锥中,侧棱底面,,,,是棱的中点. (1)求证:平面; (2)若,点是线段上一点,且,求直线与平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 先将函数化为,再由三角函数的性质,逐项判断,即可得出结果. 【题目详解】 可得 对于A,的最小正周期为,故A正确; 对于B,由,可得,故B正确; 对于C,正弦函数对称轴可得: 解得:, 当,,故C正确; 对于D,正弦函数对称中心的横坐标为: 解得: 若图象关于点对称,则 解得:,故D错误; 故选:D. 【答案点睛】 本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题. 2、C 【答案解析】 利用终边相同的角的公式判断即得正确答案. 【题目详解】 与的终边相同的角可以写成2kπ+ (k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确. 故答案为C 【答案点睛】 (1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中. 3、B 【答案解析】 由三视图知:几何体是直三棱柱消去一个三棱锥,如图: 直三棱柱的体积为,消去的三棱锥的体积为, ∴几何体的体积,故选B. 点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积. 4、B 【答案解析】 根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可. 【题目详解】 将函数的图象向左平移个单位, 得到, 此时与函数的图象重合, 则,即,, 当时,取得最小值为, 故选:. 【答案点睛】 本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键. 5、C 【答案解析】 可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可. 【题目详解】 分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有. ∴共有结对方式60+90=150种. 故选:C. 【答案点睛】 本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为. 6、C 【答案解析】 根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得. 【题目详解】 设,,则. 因为平面,平面,所以. 又,,所以平面,则. 易知,. 在中,, 即,化简得. 在中,,. 所以. 因为, 当且仅当,时等号成立,所以. 故选:C. 【答案点睛】 本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题. 7、A 【答案解析】 设,由得:,由复数相等可得的值,进而求出,即可得解. 【题目详解】 设,由得:,即, 由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限. 故选:A. 【答案点睛】 本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题. 8、B 【答案解析】 结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可. 【题目详解】 结合题意可知为偶函数,且在单调递减,故 可以转换为 对应于恒成立,即 即对恒成立 即对恒成立 令,则上递增,在上递减, 所以 令,在上递减 所以.故,故选B. 【答案点睛】 本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案. 9、A 【答案解析】 先求得全集包含的元素,由此求得集合的补集. 【题目详解】 由解得,故,所以,故选A. 【答案点睛】 本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题. 10、D 【答案解析】 由大边对大角定理结合充分条件和必要条件的定义判断即可. 【题目详解】 中,角、所对的边分别是、,由大边对大角定理知“”“”, “”“”. 因此,“” 是“”的充分必要条件. 故选:D. 【答案点睛】 本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题. 11、B 【答案解析】 设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值. 【题目详解】 由题意设四面体的棱长为,设为的中点, 以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系, 则可得,,取的三等分点、如图, 则,,,, 所以、、、、, 由题意设,, 和都是等边三角形,为的中点,,, ,平面,为平面的一个法向量, 因为与平面所成角为定值,则, 由题意可得, 因为的轨迹为一段抛物线且为定值,则也为定值, ,可得,此时,则,. 故选:B. 【答案点睛】 考查线面所成的角的求法,及正切值为定值时的情况,属于中等题. 12、B 【答案解析】 根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论. 【题目详解】 由题意,设点在第一象限,双曲线的一条渐近线方程为, 所以,, 又以为直径的圆经过点,则,即,解得,, 所以,,即,即, 所以,双曲线的离心率为. 故选:B. 【答案点睛】 本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、2 2 【答案解析】 设双曲线的右焦点为,根据周长为,计算得到答案. 【题目详解】 设双曲线的右焦点为. 周长为:. 当共线时等号成立,故,即实轴长为,. 故答案为:;. 【答案点睛】 本题考查双曲线周长的最值问题,离心率,实轴长,意在考查

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开