温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
陕西省
山阳
中学
高考
考前
模拟
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数的图象如图所示,则下列说法错误的是( )
A.函数在上单调递减
B.函数在上单调递增
C.函数的对称中心是
D.函数的对称轴是
2.已知函数,若,使得,则实数的取值范围是( )
A. B.
C. D.
3.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )
A. B. C. D.
4.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )
A. B. C. D.
5.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入
A. B.
C. D.
6.执行如图所示的程序框图,若输入,,则输出的( )
A.4 B.5 C.6 D.7
7.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )
A. B.4 C.2 D.
8.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )
A.60 B.192 C.240 D.432
9.函数的图像大致为( )
A. B.
C. D.
10.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )
A.圆,但要去掉两个点 B.椭圆,但要去掉两个点
C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点
11.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )
A. B. C. D.
12.设集合(为实数集),,,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.
14.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________
15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.
16.已知(为虚数单位),则复数________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(Ⅰ)当时,讨论函数的单调区间;
(Ⅱ)若对任意的和恒成立,求实数的取值范围.
18.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.
19.(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.
求椭圆C的方程;
若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.
20.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.
(1)求证:直线MN⊥平面ACB1;
(2)求点C1到平面B1MC的距离.
21.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.
(1)求椭圆E的方程;
(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.
22.(10分) [2018·石家庄一检]已知函数.
(1)若,求函数的图像在点处的切线方程;
(2)若函数有两个极值点,,且,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.
【题目详解】
由图象可得,函数的周期,所以.
将点代入中,得,解得,由,可得,所以.
令,得,
故函数在上单调递减,
当时,函数在上单调递减,故A正确;
令,得,
故函数在上单调递增.
当时,函数在上单调递增,故B错误;
令,得,故函数的对称中心是,故C正确;
令,得,故函数的对称轴是,故D正确.
故选:B.
【答案点睛】
本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.
2、C
【答案解析】
试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.
考点:函数的综合问题.
【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.
3、A
【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.
【题目详解】
对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、、都是假命题.
故选:A
【答案点睛】
本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.
4、D
【答案解析】
由题知,又,代入计算可得.
【题目详解】
由题知,又.
故选:D
【答案点睛】
本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.
5、C
【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.
6、C
【答案解析】
根据程序框图程序运算即可得.
【题目详解】
依程序运算可得:
,
故选:C
【答案点睛】
本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.
7、B
【答案解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.
【题目详解】
解:抛物线焦点,准线,
过作交于点,连接
由抛物线定义,
,
当且仅当三点共线时,取“=”号,
∴的最小值为.
故选:B.
【答案点睛】
本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.
8、C
【答案解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.
【题目详解】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.
故选:C.
【答案点睛】
本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.
9、A
【答案解析】
根据排除,,利用极限思想进行排除即可.
【题目详解】
解:函数的定义域为,恒成立,排除,,
当时,,当,,排除,
故选:.
【答案点睛】
本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.
10、A
【答案解析】
根据题意可得,即知C在以AB为直径的圆上.
【题目详解】
,,
,
又,,
平面,又平面
,
故在以为直径的圆上,
又是内异于的动点,
所以的轨迹是圆,但要去掉两个点A,B
故选:A
【答案点睛】
本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.
11、A
【答案解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.
【题目详解】
构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.
由得,所以,故不等式的解集为.
故选:A
【答案点睛】
本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.
12、A
【答案解析】
根据集合交集与补集运算,即可求得.
【题目详解】
集合,,
所以
所以
故选:A
【答案点睛】
本题考查了集合交集与补集的混合运算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.
【题目详解】
是抛物线准线上的一点
抛物线方程为 ,准线方程为
过作准线的垂线,垂足为,则
设直线的倾斜角为,则
当取得最小值时,最小,此时直线与抛物线相切
设直线的方程为,代入得:
,解得: 或
双曲线的实轴长为,焦距为
双曲线的离心率
故答案为:
【答案点睛】
本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.
14、
【答案解析】
利用直线与圆相切求出斜率,得到直线的方程,几何法求出
【题目详解】
解:直线与圆相切,圆心为
由,得或,
当时,到直线的距离,不成立,
当时,与圆相交于,两点,到直线的距离,
故答案为.
【答案点睛】
考查直线与圆的位置关系,相切和相交问题,属于中档题.
15、
【答案解析】
在圆上其他位置任取一点B,设圆半径为R,
其中满足条件AB弦长介于与之间的弧长为 •2πR,
则AB弦的长度大于等于半径长度的概率P==;
故答案为:.
16、
【答案解析】
解:
故答案为:
【答案点睛】
本题考查复数代数形式的乘除运算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、 (Ⅰ)见解析(Ⅱ)
【答案解析】
(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可; (Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.
【