分享
2023学年陕西省山阳中学高考考前模拟数学试题(含解析).doc
下载文档

ID:16495

大小:2.11MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 陕西省 山阳 中学 高考 考前 模拟 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数的图象如图所示,则下列说法错误的是( ) A.函数在上单调递减 B.函数在上单调递增 C.函数的对称中心是 D.函数的对称轴是 2.已知函数,若,使得,则实数的取值范围是( ) A. B. C. D. 3.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( ) A. B. C. D. 4.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( ) A. B. C. D. 5.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入 A. B. C. D. 6.执行如图所示的程序框图,若输入,,则输出的( ) A.4 B.5 C.6 D.7 7.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( ) A. B.4 C.2 D. 8.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( ) A.60 B.192 C.240 D.432 9.函数的图像大致为( ) A. B. C. D. 10.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( ) A.圆,但要去掉两个点 B.椭圆,但要去掉两个点 C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点 11.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( ) A. B. C. D. 12.设集合(为实数集),,,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______. 14.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________ 15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________. 16.已知(为虚数单位),则复数________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (Ⅰ)当时,讨论函数的单调区间; (Ⅱ)若对任意的和恒成立,求实数的取值范围. 18.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E. (1)求曲线E的方程; (2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值. 19.(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上. 求椭圆C的方程; 若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角. 20.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点. (1)求证:直线MN⊥平面ACB1; (2)求点C1到平面B1MC的距离. 21.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切. (1)求椭圆E的方程; (2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程. 22.(10分) [2018·石家庄一检]已知函数. (1)若,求函数的图像在点处的切线方程; (2)若函数有两个极值点,,且,求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可. 【题目详解】 由图象可得,函数的周期,所以. 将点代入中,得,解得,由,可得,所以. 令,得, 故函数在上单调递减, 当时,函数在上单调递减,故A正确; 令,得, 故函数在上单调递增. 当时,函数在上单调递增,故B错误; 令,得,故函数的对称中心是,故C正确; 令,得,故函数的对称轴是,故D正确. 故选:B. 【答案点睛】 本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题. 2、C 【答案解析】 试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C. 考点:函数的综合问题. 【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键. 3、A 【答案解析】 分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【题目详解】 对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、、都是假命题. 故选:A 【答案点睛】 本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题. 4、D 【答案解析】 由题知,又,代入计算可得. 【题目详解】 由题知,又. 故选:D 【答案点睛】 本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值. 5、C 【答案解析】 由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C. 6、C 【答案解析】 根据程序框图程序运算即可得. 【题目详解】 依程序运算可得: , 故选:C 【答案点睛】 本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程. 7、B 【答案解析】 设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案. 【题目详解】 解:抛物线焦点,准线, 过作交于点,连接 由抛物线定义, , 当且仅当三点共线时,取“=”号, ∴的最小值为. 故选:B. 【答案点睛】 本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题. 8、C 【答案解析】 四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类. 【题目详解】 四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为. 故选:C. 【答案点睛】 本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法. 9、A 【答案解析】 根据排除,,利用极限思想进行排除即可. 【题目详解】 解:函数的定义域为,恒成立,排除,, 当时,,当,,排除, 故选:. 【答案点睛】 本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题. 10、A 【答案解析】 根据题意可得,即知C在以AB为直径的圆上. 【题目详解】 ,, , 又,, 平面,又平面 , 故在以为直径的圆上, 又是内异于的动点, 所以的轨迹是圆,但要去掉两个点A,B 故选:A 【答案点睛】 本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题. 11、A 【答案解析】 构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集. 【题目详解】 构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以. 由得,所以,故不等式的解集为. 故选:A 【答案点睛】 本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题. 12、A 【答案解析】 根据集合交集与补集运算,即可求得. 【题目详解】 集合,, 所以 所以 故选:A 【答案点睛】 本题考查了集合交集与补集的混合运算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率. 【题目详解】 是抛物线准线上的一点 抛物线方程为 ,准线方程为 过作准线的垂线,垂足为,则 设直线的倾斜角为,则 当取得最小值时,最小,此时直线与抛物线相切 设直线的方程为,代入得: ,解得: 或 双曲线的实轴长为,焦距为 双曲线的离心率 故答案为: 【答案点睛】 本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标. 14、 【答案解析】 利用直线与圆相切求出斜率,得到直线的方程,几何法求出 【题目详解】 解:直线与圆相切,圆心为 由,得或, 当时,到直线的距离,不成立, 当时,与圆相交于,两点,到直线的距离, 故答案为. 【答案点睛】 考查直线与圆的位置关系,相切和相交问题,属于中档题. 15、 【答案解析】 在圆上其他位置任取一点B,设圆半径为R, 其中满足条件AB弦长介于与之间的弧长为 •2πR, 则AB弦的长度大于等于半径长度的概率P==; 故答案为:. 16、 【答案解析】 解: 故答案为: 【答案点睛】 本题考查复数代数形式的乘除运算,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、 (Ⅰ)见解析(Ⅱ) 【答案解析】 (Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可; (Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可. 【

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开