分享
2023学年贵州省剑河民族中学高考数学五模试卷(含解析).doc
下载文档

ID:16483

大小:1.88MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 贵州省 剑河 民族 中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为 A. B. C. D. 2.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则( ) A.2020 B.4038 C.4039 D.4040 3.设函数满足,则的图像可能是 A. B. C. D. 4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A. B. C. D. 5.已知,则的值等于( ) A. B. C. D. 6.已知是函数的极大值点,则的取值范围是 A. B. C. D. 7.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( ) A.甲班的数学成绩平均分的平均水平高于乙班 B.甲班的数学成绩的平均分比乙班稳定 C.甲班的数学成绩平均分的中位数高于乙班 D.甲、乙两班这5次数学测试的总平均分是103 8.在四面体中,为正三角形,边长为6,,,,则四面体的体积为( ) A. B. C.24 D. 9.已知(),i为虚数单位,则( ) A. B.3 C.1 D.5 10.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( ) A. B. C. D. 11.i是虚数单位,若,则乘积的值是( ) A.-15 B.-3 C.3 D.15 12.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  ) A.2017年第一季度GDP增速由高到低排位第5的是浙江省. B.与去年同期相比,2017年第一季度的GDP总量实现了增长. C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个 D.去年同期河南省的GDP总量不超过4000亿元. 二、填空题:本题共4小题,每小题5分,共20分。 13.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答). 14.数据的标准差为_____. 15.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____. 16.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设函数. (1)若,时,在上单调递减,求的取值范围; (2)若,,,求证:当时,. 18.(12分)已知函数. (1)若是函数的极值点,求的单调区间; (2)当时,证明: 19.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强. 安全意识强 安全意识不强 合计 男性 女性 合计 (Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率; (Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关; (Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望. 附:,其中 0.010 0.005 0.001 6.635 7.879 10.828 20.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工. (1)求这个样本数据的中位数和众数; (2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望. 21.(12分)已知向量,函数. (1)求函数的最小正周期及单调递增区间; (2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值. 22.(10分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和. (1)求椭圆的标准方程; (2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 如图所示,设依次构成等差数列,其公差为. 根据椭圆定义得,又,则,解得,.所以,,,. 在和中,由余弦定理得,整理解得.故选D. 2、D 【答案解析】 计算,代入等式,根据化简得到答案. 【题目详解】 ,,,故, , 故. 故选:. 【答案点睛】 本题考查了斐波那契数列,意在考查学生的计算能力和应用能力. 3、B 【答案解析】 根据题意,确定函数的性质,再判断哪一个图像具有这些性质. 由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B. 4、B 【答案解析】 先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求. 【题目详解】 解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有, 其和等于16的结果,共2种等可能的结果, 故概率. 故选:B. 【答案点睛】 古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题. 5、A 【答案解析】 由余弦公式的二倍角可得,,再由诱导公式有 ,所以 【题目详解】 ∵ ∴由余弦公式的二倍角展开式有 又∵ ∴ 故选:A 【答案点睛】 本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题 6、B 【答案解析】 方法一:令,则,, 当,时,,单调递减, ∴时,,,且, ∴,即在上单调递增, 时,,,且, ∴,即在上单调递减,∴是函数的极大值点,∴满足题意; 当时,存在使得,即, 又在上单调递减,∴时,,所以, 这与是函数的极大值点矛盾. 综上,.故选B. 方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B. 7、D 【答案解析】 计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案. 【题目详解】 由题意可得甲班的平均分是104,中位数是103,方差是26.4; 乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确. 因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误. 故选:. 【答案点睛】 本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力. 8、A 【答案解析】 推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果. 【题目详解】 解: 在四面体中,为等边三角形,边长为6, ,,, , , 分别取的中点,连结, 则, 且,, , , 平面,平面, , 四面体的体积为: . 故答案为:. 【答案点睛】 本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力. 9、C 【答案解析】 利用复数代数形式的乘法运算化简得答案. 【题目详解】 由,得,解得. 故选:C. 【答案点睛】 本题考查复数代数形式的乘法运算,是基础题. 10、D 【答案解析】 根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值. 【题目详解】 函数(,)是上的奇函数, 则,所以. 又的图象关于直线对称可得,,即,, 由函数的单调区间知,, 即, 综上,则, . 故选:D 【答案点睛】 本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题. 11、B 【答案解析】 ,∴,选B. 12、C 【答案解析】 利用图表中的数据进行分析即可求解. 【题目详解】 对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确; 对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确; 对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误; 对于D选项:去年同期河南省的GDP总量,故D正确. 故选:C. 【答案点睛】 本题考查了图表分析,学生的分析能力,推理能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 的展开式中所有项的系数之和为,,,项的系数是 ,故答案为(1),(2). 14、 【答案解析】 先计算平均数再求解方差与标准差即可. 【题目详解】 解:样本的平均数, 这组数据的方差是 标准差, 故答案为: 【答案点睛】 本题主要考查了标准差的计算,属于基础题. 15、 【答案解析】 做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积. 【题目详解】 解:如图做 中点,的中点,连接 ,由题意知 ,则 设的外接圆圆心为,则在直线上且 设长方形的外接圆圆心为,则在上且.设外接球的球心为 在 中,由余弦定理可知,. 在平面中,以 为坐标原点,以 所在直线为 轴,以过点垂直于 轴的直 线为 轴,如图建立坐标系,由题意知,在平面中且 设 ,则,因为,所以 解得.则 所以球的表面积为. 故答案为: . 【答案点睛】 本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解. 16、 【答案解析】 解答:由圆的方程可得圆心C的坐标为(2,2)

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开