分享
2023年初一数学数的整除性答案.docx
下载文档

ID:1647254

大小:20.29KB

页数:4页

格式:DOCX

时间:2023-04-22

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年初 数学 整除 答案
初一数学,数的整除性_答案 专题02 数的整除性 例1 267 提示:333-66=267. 例2 C 提示:关于②的证明:对于a,b假设至少有一个是3的倍数,那么ab是3的倍数.假设a,b都不是3的倍数,那么有:(1)当a=3m+1,b=3n+1时,a-b=3(m-n);(2)当a=3m+1,b=3n+2时,a+b=3(m+n+1);(3)当a=3m+2,b=3n+1时,a+b=3(m+n+1);(4)当a=3m+2,b=3n+2时,a-b=3(m-n). 例3 a=8.b=0提示:由9|(19+a+b)得a+b=8或17;由11|(3+a-b)得a-b=8或-3. 例4 设x,y,z,t是整数,并且假设5a+7b-22c=x(7a+2b+3c) +13(ya+zb+tc).比较上式a,b,c的系数,应当有,取x=-3,可以得到y=2,z=1,t=-1, 那么有13 (2a+b-c)-3(7a+2b+3c)=5a+7b-22c.既然3(7a+2b+3c)和13(2a+b-c)都能被13整除,那么5a+7b-22c就能被13整除. 例5 考虑到“魔术数〞均为7的倍数,又a1,a2,…,an互不相等,不妨设a1 <a2<…<an,余数必为1,2,3,4,5,6,0,设ai=ki+t(i=1,2,3,…,n;t=0,1,2,3,4,5,6),至少有一个为m的“魔术数〞,因为ai·10k+m(k是m的位数),是7的倍数,当i≤b时,而ai·t除以7的余数都是0,1,2,3,4,5,6中的6个;当i=7时,而ai·10k除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i=7时,依抽屉原理,ai·10k与m二者余数的和至少有一个是7,此时ai·10k+m被7整除,即n=7. 例6 (1)A5:0,1,2,1,0.(或A5:0,1,0,1,0) (2)a1000=13+999=1 012. (3)n被4除余数为0或1. A级 1.1 2.3 143 3.39 798 4.A 5.C 6.B 7.五位数=10×+e.又∵为4的倍数.故最值为1 000,又因为为9的倍数.故1+0+0+0+e能被9整除,所以e只能取8.因此最小值为 10 008. 8.324 561提示:d+f-e是11的倍数,但6≤d+f≤5+6=11,1≤e≤6,故0≤d+f-e≤10,因此d+f-e=0,即5+f=e,又e≤d,f≥1,故f=l,e=6, 9.19 提示:1+7+3+□的和能被9整除,故□里只能填7,同理,得到后两个数为8,4. B级 1.2 521 a=2 520n+1(n∈N+) 2.57 3.719 895提示:这个数能被33整除,故也能被3整除.于是,各位数字之和(x+1+9+8+9+y)也能被3整除,故x+y能被3整除. 4.B 5.B 6.A提示:两两差能被n整除,n=179,m=164. 7.由题意得++++=3 194,两边加上.得222(a+b+c)=3194+ ∴222(a+b+c) =222×14+86+.那么+86是222的倍数. 且a+b+c>14.设+86=222n考虑到是三位数,依次取n=1,2,3,4.分别得出的可能值为136,358,580,802,又因为a+b+c>14.故=358. 8.设N为所求的三位“拷贝数〞,它的各位数字分别为a,b,c(a,b,c不全相等).将其数码重新排列后,设其中最大数为,那么最小数为.故N= -=(100a+10b+c)- (100c+10b+a)=99(a-c). 可知N为99的倍数.这样的三位数可能是198,297,396,495,594,693,792,891,990.而这9个数中,只有954- 459=495.故495是唯一的三位“拷贝数〞. 9.设原六位数为,那么6×=,即6×(1000×+)=1000×+,所以994×-5 999×,即142×=857×, ∵(142,857)=1,∴ 142|,857|,而,为三位数,∴=142,=857,故=142857. 10.设这个数为,那么1 000a+100b+10c+d+a+b+c+d=1 999,即1 001a+101b+11c+2d=1 999,得a=1,进而101b+11c+2d=998,101b≥998-117-881,有b=9,那么11c+2d=89,而0≤2d≤18,71≤11c≤89,推得c=7,d=6,故这个四位数是1 976. 11.当n=4时,数1,3,5,8中没有假设干个数的和能被10整除.当n=5时,设a1a2,…,a5是1,2,…,9中的5个不同的数,假设其中任意假设干个数,它们的和都不能被10整除,那么中不可能同时出现1和9,2和8,3和7,4和6,于是中必定有一个为5,假设中含1,那么不含9,于是,不含,故含6;不含,故含7;不含,故含8;但是5+7+8=20是10的倍数, 矛盾. 假设中含9, 那么不含1, 于是不含故含4; 不含故含3; 不含故含2; 但是是10的倍数, 矛盾. 综上所述,n的最小值为5 此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开