分享
2023学年虎门外国语学校高考数学押题试卷(含解析).doc
下载文档

ID:16468

大小:1.96MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 虎门 外国语学校 高考 数学 押题 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.下列四个结论中正确的个数是 (1)对于命题使得,则都有; (2)已知,则 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为; (4)“”是“”的充分不必要条件. A.1 B.2 C.3 D.4 2.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是(  ) A.该市总有 15000 户低收入家庭 B.在该市从业人员中,低收入家庭共有1800户 C.在该市无业人员中,低收入家庭有4350户 D.在该市大于18岁在读学生中,低收入家庭有 800 户 3.已知,函数在区间上恰有个极值点,则正实数的取值范围为( ) A. B. C. D. 4.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( ) A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著 B.从2014年到2018年这5年,高铁运营里程与年价正相关 C.2018年高铁运营里程比2014年高铁运营里程增长80%以上 D.从2014年到2018年这5年,高铁运营里程数依次成等差数列 5.已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( ) A. B. C. D. 6.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则( ) A., B., C., D., 7.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为(  ) A. B. C. D. 8.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( ) A. B. C. D. 9.已知某几何体的三视图如右图所示,则该几何体的体积为( ) A.3 B. C. D. 10.已知复数(为虚数单位)在复平面内对应的点的坐标是( ) A. B. C. D. 11.已知是等差数列的前项和,,,则( ) A.85 B. C.35 D. 12.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( ) A.1 B.2 C.-1 D.-2 二、填空题:本题共4小题,每小题5分,共20分。 13.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________. 14.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______. 15.抛物线上到其焦点的距离为的点的个数为________. 16.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:. (1)求曲线的普通方程以及曲线的平面直角坐标方程; (2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标. 18.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程: (1)求曲线的极坐标方程; (2)若直线与曲线交于、两点,求的最大值. 19.(12分) [选修4-5:不等式选讲]:已知函数. (1)当时,求不等式的解集; (2)设,,且的最小值为.若,求的最小值. 20.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且. (1)求证:平面平面; (2)求四棱锥的体积. 21.(12分)已知函数,且曲线在处的切线方程为. (1)求的极值点与极值. (2)当,时,证明:. 22.(10分)如图在棱锥中,为矩形,面, (1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由; (2)当为中点时,求二面角的余弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【题目详解】 由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的; (2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的; (3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确; (4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件. 【答案点睛】 本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 2、D 【答案解析】 根据给出的统计图表,对选项进行逐一判断,即可得到正确答案. 【题目详解】 解:由题意知,该市老年低收入家庭共有900户,所占比例为6%, 则该市总有低收入家庭900÷6%=15000(户),A正确, 该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确, 该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确, 该市大于18 岁在读学生中,低收入家庭有15000×4%=600(户),D错误. 故选:D. 【答案点睛】 本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题. 3、B 【答案解析】 先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围. 【题目详解】 解: 令,解得对称轴,, 又函数在区间恰有个极值点,只需 解得. 故选:. 【答案点睛】 本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题. (1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围. 4、D 【答案解析】 由折线图逐项分析即可求解 【题目详解】 选项,显然正确; 对于,,选项正确; 1.6,1.9,2.2,2.5,2.9不是等差数列,故错. 故选:D 【答案点睛】 本题考查统计的知识,考查数据处理能力和应用意识,是基础题 5、A 【答案解析】 根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求. 【题目详解】 如图所示: 设内切球球心为,到平面的距离为,截面圆的半径为, 因为内切球的半径等于正方体棱长的一半,所以球的半径为, 又因为,所以, 又因为, 所以,所以, 所以截面圆的半径,所以截面圆的面积为. 故选:A. 【答案点睛】 本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6、A 【答案解析】 设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项. 【题目详解】 如图所示,利用排除法,取与重合时的情况. 不妨设,延长到,使得. ,,,,则, 由余弦定理得, ,, 又,, 当平面平面时,,,排除B、D选项; 因为,,此时,, 当平面平面时,,,排除C选项. 故选:A. 【答案点睛】 本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题. 7、C 【答案解析】 设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论. 【题目详解】 设分别是的中点 平面 是等边三角形 又 平面 为与平面所成的角 是边长为的等边三角形 ,且为所在截面圆的圆心 球的表面积为 球的半径 平面 本题正确选项: 【答案点睛】 本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题. 8、A 【答案解析】 将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可. 【题目详解】 解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同, ∵四面体所有棱长都是4, ∴正方体的棱长为, 设球的半径为, 则,解得, 所以, 故选:A. 【答案点睛】 本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题. 9、B 【答案解析】 由三视图知:几何体是直三棱柱消去一个三棱锥,如图: 直三棱柱的体积为,消去的三棱锥的体积为, ∴几何体的体积,故选B. 点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积. 10、A 【答案解析】 直接利用复数代数形式的乘除运算化简,求得的坐标得出答案. 【题目详解】 解:, 在复平面内对应的点的坐标是. 故选:A. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 11、B 【答案解析】 将已知条件转化为的形式,求得,由此求得. 【题目详解】 设公差为,则,所以,,,. 故选:B 【答案点睛】 本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题. 12、D 【答案解析】 由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求. 【题目详解】 因为,所以O在AB的中垂线上,即O在两个

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开