温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
梁河县
一中
2023
学年
下学
联合
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装( )
(附:)
A.个 B.个 C.个 D.个
2.已知分别为圆与的直径,则的取值范围为( )
A. B. C. D.
3.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于( )
A.6 B.7 C.8 D.9
4.记为等差数列的前项和.若,,则( )
A.5 B.3 C.-12 D.-13
5.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )
A. B. C. D.
6.已知数列满足:,则( )
A.16 B.25 C.28 D.33
7.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A.2017年第一季度GDP增速由高到低排位第5的是浙江省.
B.与去年同期相比,2017年第一季度的GDP总量实现了增长.
C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D.去年同期河南省的GDP总量不超过4000亿元.
8.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为( )
A. B.
C. D.
9.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( )
A. B. C. D.
10.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
11.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )
A.3.132 B.3.137 C.3.142 D.3.147
12.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好; ③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“ ,”的充要条件;其中真命题的个数为( )
A.4 B.3 C.2 D.1
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,且 ,则实数的值是__________.
14.正方体的棱长为2, 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦), 为正方体表面上的动点,当弦的长度最大时, 的取值范围是______.
15.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.
16. “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数(其中),且函数在处的切线与直线平行.
(1)求的值;
(2)若函数,求证:恒成立.
18.(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.
(1)求证:平面;
(2)(文科)求三棱锥的体积;
(理科)求二面角的正切值.
19.(12分) [选修4-5:不等式选讲]
设函数.
(1)求不等式的解集;
(2)已知关于的不等式在上有解,求实数的取值范围.
20.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.
(1)证明:平面平面;
(2)求二面角的余弦值.
21.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:
等级
不合格
合格
得分
频数
6
24
(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?
是否合格
性别
不合格
合格
总计
男生
女生
总计
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
附表及公式:,其中.
22.(10分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.
【题目详解】
由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,
这样,相邻的四个球的球心连线构成棱长为cm的正面体,
易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,
则最上层球面上的点距离桶底最远为cm,
若想要盖上盖子,则需要满足,解得,
所以最多可以装层球,即最多可以装个球.
故选:
【答案点睛】
本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.
2、A
【答案解析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解
【题目详解】
如图,其中,所以
.
故选:A
【答案点睛】
本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题
3、A
【答案解析】
先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.
【题目详解】
解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.
解法二:由赋值法易求得,可知当时,取最小值.
故选:A
【答案点睛】
此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.
4、B
【答案解析】
由题得,,解得,,计算可得.
【题目详解】
,,,,解得,,
.
故选:B
【答案点睛】
本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.
5、C
【答案解析】
设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.
【题目详解】
设过点作圆 的切线的切点为,
,
所以是中点,,
,
.
故选:C.
【答案点睛】
本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.
6、C
【答案解析】
依次递推求出得解.
【题目详解】
n=1时,,
n=2时,,
n=3时,,
n=4时,,
n=5时,.
故选:C
【答案点睛】
本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.
7、C
【答案解析】
利用图表中的数据进行分析即可求解.
【题目详解】
对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;
对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;
对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;
对于D选项:去年同期河南省的GDP总量,故D正确.
故选:C.
【答案点睛】
本题考查了图表分析,学生的分析能力,推理能力,属于基础题.
8、A
【答案解析】
由题意可得,即,代入双曲线的渐近线方程可得答案.
【题目详解】
依题意椭圆与双曲线即的焦点相同,可得:,
即,∴,可得,
双曲线的渐近线方程为:,
故选:A.
【答案点睛】
本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.
9、A
【答案解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.
【题目详解】
解:,
∴,
设,
∴,
当时,,函数单调递增,
当时,,函数单调递减,
∴,
当时,,当,,
函数恒过点,
分别画出与的图象,如图所示,
,
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,
∴且,即,且
∴,
故实数m的最大值为,
故选:A
【答案点睛】
本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.
10、C
【答案解析】
根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
点不在直线、上,
若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,
若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:
若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立
则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.
11、B
【答案解析】
结合随机模拟概念和几何概型公式计算即可
【题目详解】
如图,由几何概型公式可知:.
故选:B
【答案点睛】
本题考查随机模拟的概念和几何概型,属于基础题