温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
辽宁省
营口
开发区
第一
高级中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )
A.2对 B.3对
C.4对 D.5对
2.中,如果,则的形状是( )
A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形
3.设集合,,则集合
A. B. C. D.
4.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )
A. B.
C. D.
5.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )
A. B. C. D.
6.若,则“”是 “”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},则=( )
A.{2,3,4,5} B.{2,3,4,5,6}
C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}
8.已知复数z满足(其中i为虚数单位),则复数z的虚部是( )
A. B.1 C. D.i
9.下列判断错误的是( )
A.若随机变量服从正态分布,则
B.已知直线平面,直线平面,则“”是“”的充分不必要条件
C.若随机变量服从二项分布: , 则
D.是的充分不必要条件
10.函数的图象大致为( )
A. B.
C. D.
11.已知集合,,则中元素的个数为( )
A.3 B.2 C.1 D.0
12.在直角中,,,,若,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.
14.已知内角,,的对边分别为,,.,,则_________.
15.复数(其中i为虚数单位)的共轭复数为________.
16.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为
______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)当时,求的单调区间.
(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.
(3)已知分别在,处取得极值,求证:.
18.(12分)已知函数是自然对数的底数.
(1)若,讨论的单调性;
(2)若有两个极值点,求的取值范围,并证明:.
19.(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.
(1)求曲线C的方程;
(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.
20.(12分)设的内角的对边分别为,已知.
(1)求;
(2)若为锐角三角形,求的取值范围.
21.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;
(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.
22.(10分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.
(1)求抛物线的方程;
(2)求证:直线恒过定点,并求面积的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.
【题目详解】
该几何体是一个四棱锥,直观图如下图所示,易知平面平面,
作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,
又AD⊥CD,所以,CD⊥平面PAD,
所以平面平面,
同理可证:平面平面,
由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,
所以,AP⊥平面PCD,所以,平面平面,
所以该多面体各表面所在平面互相垂直的有4对.
【答案点睛】
本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.
2、B
【答案解析】
化简得lgcosA=lg=﹣lg2,即,结合, 可求,得代入sinC=sinB,从而可求C,B,进而可判断.
【题目详解】
由,可得lgcosA==﹣lg2,∴,
∵,∴,,∴sinC=sinB==,∴tanC=,C=,B=.
故选:B
【答案点睛】
本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.
3、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
4、D
【答案解析】
因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.
点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.
5、B
【答案解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.
【题目详解】
由题意甲、乙租车费用为3元的概率分别是,
∴甲、乙两人所扣租车费用相同的概率为
.
故选:B.
【答案点睛】
本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.
6、A
【答案解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.
【题目详解】
当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.
【答案点睛】
易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.
7、C
【答案解析】
根据集合的并集、补集的概念,可得结果.
【题目详解】
集合A={x∈N|x2<8x}={x∈N|0<x<8},
所以集合A={1,2,3,4,5,6,7}
B={2,3,6},C={2,3,7},
故={1,4,5,6},
所以={1,2,3,4,5,6}.
故选:C.
【答案点睛】
本题考查的是集合并集,补集的概念,属基础题.
8、A
【答案解析】
由虚数单位i的运算性质可得,则答案可求.
【题目详解】
解:∵,
∴,,
则化为,
∴z的虚部为.
故选:A.
【答案点睛】
本题考查了虚数单位i的运算性质、复数的概念,属于基础题.
9、D
【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.
【题目详解】
对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;
对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;
对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;
对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.
因而是的既不充分也不必要条件,故选项不正确,符合题意.
故选:D
【答案点睛】
本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.
10、A
【答案解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.
【题目详解】
因为,所以是偶函数,排除C和D.
当时,,,
令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.
故选:A
【答案点睛】
本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.
11、C
【答案解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.
【题目详解】
由题可知:集合表示半圆上的点,集合表示直线上的点,
联立与,
可得,整理得,
即,
当时,,不满足题意;
故方程组有唯一的解.
故.
故选:C.
【答案点睛】
本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.
12、C
【答案解析】
在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.
【题目详解】
在直角中,,,,,
,
若,则
故选C.
【答案点睛】
本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a, 求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,
【题目详解】
不妨设点A,D,C,B到面的距离分别为1,2,3,4,
平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:
由题意得:F为中点,E为AB的三等分点(靠近点A),
设棱长为a, ,
顶点D到面ABC的距离为
所以,
由余弦定理得:
,
所以,所以,
又顶点A到面EDF的距离为,
所以,
因为,
所以,
解得,
故答案为:
【答案点睛】
本题主要考查几何体的切割问题以及等体积法的应用,还