分享
2023学年辽宁省凌源市第三中学高考临考冲刺数学试卷(含解析).doc
下载文档

ID:16434

大小:2.34MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 辽宁省 凌源市 第三中学 高考 冲刺 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,,,则( ) A. B. C. D. 2.如图,圆的半径为,,是圆上的定点,,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( ) A. B. C. D. 3.已知函数的图象如图所示,则下列说法错误的是( ) A.函数在上单调递减 B.函数在上单调递增 C.函数的对称中心是 D.函数的对称轴是 4.函数在的图象大致为( ) A. B. C. D. 5.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为( ) A. B. C. D. 6.若,,,点C在AB上,且,设,则的值为( ) A. B. C. D. 7.已知全集为,集合,则( ) A. B. C. D. 8.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) A. B. C. D. 9.正三棱柱中,,是的中点,则异面直线与所成的角为( ) A. B. C. D. 10.已知命题若,则,则下列说法正确的是( ) A.命题是真命题 B.命题的逆命题是真命题 C.命题的否命题是“若,则” D.命题的逆否命题是“若,则” 11.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为(  ) A. B. C. D. 12.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知实数、满足,且可行域表示的区域为三角形,则实数的取值范围为______,若目标函数的最小值为-1,则实数等于______. 14.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____. 15.设定义域为的函数满足,则不等式的解集为__________. 16.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表: 运动达人 非运动达人 总计 男 35 60 女 26 总计 100 (1)(i)将列联表补充完整; (ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”? (2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望. 附: 18.(12分)如图,在平面四边形中,,,. (1)求; (2)求四边形面积的最大值. 19.(12分)的内角的对边分别为,若 (1)求角的大小 (2)若,求的周长 20.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且. (1)求椭圆的标准方程; (2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值. 21.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数). (1)求曲线的直角坐标方程与直线的普通方程; (2)已知点,直线与曲线交于、两点,求. 22.(10分)在中,内角的边长分别为,且. (1)若,,求的值; (2)若,且的面积,求和的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果. 【题目详解】 , 所以,即. 故选:C. 【答案点睛】 本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易. 2、B 【答案解析】 根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解. 【题目详解】 由题意,当时,P与A重合,则与B重合, 所以,故排除C,D选项; 当时,,由图象可知选B. 故选:B 【答案点睛】 本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题. 3、B 【答案解析】 根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可. 【题目详解】 由图象可得,函数的周期,所以. 将点代入中,得,解得,由,可得,所以. 令,得, 故函数在上单调递减, 当时,函数在上单调递减,故A正确; 令,得, 故函数在上单调递增. 当时,函数在上单调递增,故B错误; 令,得,故函数的对称中心是,故C正确; 令,得,故函数的对称轴是,故D正确. 故选:B. 【答案点睛】 本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题. 4、B 【答案解析】 先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案. 【题目详解】 是奇函数,排除C,D;,排除A. 故选:B. 【答案点睛】 本题考查函数图象的判断,属于常考题. 5、A 【答案解析】 根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解. 【题目详解】 当为奇数时,, 则数列奇数项是以为首项,以为公差的等差数列, 当为偶数时,, 则数列中每个偶数项加是以为首项,以为公比的等比数列. 所以 . 故选:A 【答案点睛】 本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题. 6、B 【答案解析】 利用向量的数量积运算即可算出. 【题目详解】 解: ,, 又在上 , 故选: 【答案点睛】 本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用. 7、D 【答案解析】 对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式, 再由交集的定义求解即可. 【题目详解】 , ,. 故选:D 【答案点睛】 本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式. 8、A 【答案解析】 设E为BD中点,连接AE、CE,过A作于点O,连接DO,得到即为直线AD与平面BCD所成角的平面角,根据题中条件求得相应的量,分析得到即为直线AC与平面ABD所成角,进而求得其正弦值,得到结果. 【题目详解】 设E为BD中点,连接AE、CE, 由题可知,,所以平面, 过A作于点O,连接DO,则平面, 所以即为直线AD与平面BCD所成角的平面角, 所以,可得, 在中可得, 又,即点O与点C重合,此时有平面, 过C作与点F, 又,所以,所以平面, 从而角即为直线AC与平面ABD所成角,, 故选:A. 【答案点睛】 该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目. 9、C 【答案解析】 取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果. 【题目详解】 解:如图,取中点,连接,, 由于正三棱柱,则底面, 而底面,所以, 由正三棱柱的性质可知,为等边三角形, 所以,且, 所以平面, 而平面,则, 则//,, ∴即为异面直线与所成角, 设,则,,, 则, ∴. 故选:C. 【答案点睛】 本题考查通过几何法求异面直线的夹角,考查计算能力. 10、B 【答案解析】 解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论. 【题目详解】 解不等式,解得,则命题为假命题,A选项错误; 命题的逆命题是“若,则”,该命题为真命题,B选项正确; 命题的否命题是“若,则”,C选项错误; 命题的逆否命题是“若,则”,D选项错误. 故选:B. 【答案点睛】 本题考查四种命题的关系,考查推理能力,属于基础题. 11、A 【答案解析】 求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率. 【题目详解】 不妨设双曲线的一条渐近线与圆交于, 因为,所以圆心到的距离为:, 即,因为,所以解得. 故选A. 【答案点睛】 本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程. 12、A 【答案解析】 由题意, 根据双曲线的对称性知在轴上,设,则由 得:, 因为到直线的距离小于,所以 , 即,所以双曲线渐近线斜率,故选A. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值,利用数形结合即可得到结论. 【题目详解】 作出可行域如图, 则要为三角形需满足在直线下方,即,; 目标函数可视为,则为斜率为1的直线纵截距的相反数, 该直线截距最大在过点时,此时, 直线:,与:的交点为, 该点也在直线:上,故, 故答案为:;. 【答案点睛】 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题. 14、 【答案解析】 乙不输的概率为,填. 15、 【答案解析】 根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论. 【题目详解】 设F(x), 则F′(x), ∵, ∴F′(x)>0,即函数F(x)在定义域上单调递增. ∵ ∴,即F(x)<F(2x) ∴,即x>1 ∴不等式的解为 故答案为: 【答案点睛】 本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键. 16、(或写成) 【答案解析】 试题分析:设,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开