温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
重庆市
九龙坡区
育才
中学
高考
数学
考前
最后
一卷
预测
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )
A. B. C. D.
2.设全集,集合,.则集合等于( )
A. B. C. D.
3.设集合(为实数集),,,则( )
A. B. C. D.
4.函数的部分图象大致为( )
A. B.
C. D.
5.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入
A. B.
C. D.
6.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为( )
A. B. C. D.
7.复数的虚部是 ( )
A. B. C. D.
8.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )
A. B.
C. D.
9.已知正项数列满足:,设,当最小时,的值为( )
A. B. C. D.
10.在中,在边上满足,为的中点,则( ).
A. B. C. D.
11.已知集合,,若,则的最小值为( )
A.1 B.2 C.3 D.4
12.抛物线的焦点为,点是上一点,,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_________.
14.已知非零向量,满足,且,则与的夹角为____________.
15.设,满足条件,则的最大值为__________.
16.设,若关于的方程有实数解,则实数的取值范围_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).
(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.
(2)设为曲线上任意一点,求的取值范围.
18.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数
2
3
4
5
6
甲设备
5
10
30
5
0
乙设备
0
5
15
15
15
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
19.(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.
(1)证明:BD⊥EG;
(2)若三棱锥,求菱形ABCD的边长.
20.(12分)设函数,其中.
(Ⅰ)当为偶函数时,求函数的极值;
(Ⅱ)若函数在区间上有两个零点,求的取值范围.
21.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.
(1)求证:平面平面;
(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.
22.(10分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由,则输出为300,即可得出判断框的答案
【题目详解】
由,则输出的值为300,,故判断框中应填?
故选:.
【答案点睛】
本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
2、A
【答案解析】
先算出集合,再与集合B求交集即可.
【题目详解】
因为或.所以,又因为.
所以.
故选:A.
【答案点睛】
本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.
3、A
【答案解析】
根据集合交集与补集运算,即可求得.
【题目详解】
集合,,
所以
所以
故选:A
【答案点睛】
本题考查了集合交集与补集的混合运算,属于基础题.
4、B
【答案解析】
图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
【题目详解】
,故奇函数,四个图像均符合。
当时,,,排除C、D
当时,,,排除A。
故选B。
【答案点睛】
图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。
5、C
【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.
6、D
【答案解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.
【题目详解】
构造函数,
因为,
所以,
所以为奇函数,
当时,,所以在上单调递减,
所以在R上单调递减.
因为存在,
所以,
所以,
化简得,
所以,即
令,
因为为函数的一个零点,
所以在时有一个零点
因为当时,,
所以函数在时单调递减,
由选项知,,
又因为,
所以要使在时有一个零点,
只需使,解得,
所以a的取值范围为,故选D.
【答案点睛】
本题主要考查函数与方程的综合问题,难度较大.
7、C
【答案解析】
因为 ,所以的虚部是 ,故选C.
8、C
【答案解析】
将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.
【题目详解】
将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:
则为中点,取中点,连接,设正四面体的棱长均为,
由中位线定理可得且,
所以即为与直线所成的角,
,
由余弦定理可得
,
所以直线与直线所成角的余弦值为,
故选:C.
【答案点睛】
本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.
9、B
【答案解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.
【题目详解】
由得,
即,
,当且仅当时取得最小值,
此时.
故选:B
【答案点睛】
本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.
10、B
【答案解析】
由,可得,,再将代入即可.
【题目详解】
因为,所以,故
.
故选:B.
【答案点睛】
本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.
11、B
【答案解析】
解出,分别代入选项中 的值进行验证.
【题目详解】
解:,.当 时,,此时不成立.
当 时,,此时成立,符合题意.
故选:B.
【答案点睛】
本题考查了不等式的解法,考查了集合的关系.
12、B
【答案解析】
根据抛物线定义得,即可解得结果.
【题目详解】
因为,所以.
故选B
【答案点睛】
本题考查抛物线定义,考查基本分析求解能力,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将 ,代入,利用韦达定理,可得 ,从而可知以为直径的圆经过原点O.
【题目详解】
设点,由题意可得,,,可得,设直线的方程为,代入抛物线可得
,,
,
,以AB为直径的圆经过原点.
故答案为:(0,0)
【答案点睛】
本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.
14、(或写成)
【答案解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.
【题目详解】
设与的夹角为
可得,
故,将代入可得
得到,
于是与的夹角为.
故答案为:.
【答案点睛】
本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.
15、
【答案解析】
作出可行域,由得,平移直线,数形结合可求的最大值.
【题目详解】
作出可行域如图所示
由得,则是直线在轴上的截距.
平移直线,当直线经过可行域内的点时,最小,此时最大.
解方程组,得,.
.
故答案为:.
【答案点睛】
本题考查简单的线性规划,属于基础题.
16、
【答案解析】
先求出,从而得函数在区间上为增函数;在区间为减函数.即可得的最大值为,令,得函数取得最小值,由有实数解,,进而得实数的取值范围.
【题目详解】
解:,
当时,;当时,;
函数在区间上为增函数;在区间为减函数.
所以的最大值为,
令,
所以当时,函数取得最小值,
又因为方程有实数解,那么,即,
所以实数的取值范围是:.
故答案为:
【答案点睛】
本题考查了函数的单调性,函数的最值问题,导数的应用,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)或;(2).
【答案解析】
(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.
【题目详解】
(1)曲线C的极坐标方程是化为直角坐标方程为:
直线的直角坐标方程为:
圆心到直线l的距离(弦心距)
圆心到直线的距离为 :
或
(2)曲线的方程可化为,其参数方程为:
为曲线上任意一点,
的取值范围是
18、(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析
【答案解析】
(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计算概率得到分布列;
(2)计算期望,得到,设甲、乙两设备一年内的维修次数分别为,,计算分布列,计算数学期望得到答案.
【题目详解】
(1)的可能取值为10000,11000,12000
,,
因此的分布如下
10000
11000
12000
的可能取值为9000,10000,11000,12000
,,,