温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
海南省
儋州市
第一
中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量服从正态分布,且,则( )
A. B. C. D.
2.函数的部分图象大致是( )
A. B.
C. D.
3.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则( )
A. B. C. D.大小关系不能确定
4.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )
①绕着轴上一点旋转;
②沿轴正方向平移;
③以轴为轴作轴对称;
④以轴的某一条垂线为轴作轴对称.
A.①③ B.③④ C.②③ D.②④
5.已知函数在上有两个零点,则的取值范围是( )
A. B. C. D.
6.若,则实数的大小关系为( )
A. B. C. D.
7.已知、,,则下列是等式成立的必要不充分条件的是( )
A. B.
C. D.
8.已知等差数列中,若,则此数列中一定为0的是( )
A. B. C. D.
9.已知随机变量满足,,.若,则( )
A., B.,
C., D.,
10.设、,数列满足,,,则( )
A.对于任意,都存在实数,使得恒成立
B.对于任意,都存在实数,使得恒成立
C.对于任意,都存在实数,使得恒成立
D.对于任意,都存在实数,使得恒成立
11.第24届冬奥会将于2023年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为( )
A. B. C. D.
12.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.
14.某公园划船收费标准如表:
某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.
15.已知函数,对于任意都有,则的值为______________.
16.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)设,若存在两个极值点,,且,求证:;
(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).
18.(12分)设数列是等比数列,,已知, (1)求数列的首项和公比;(2)求数列的通项公式.
19.(12分)数列的前项和为,且.数列满足,其前项和为.
(1)求数列与的通项公式;
(2)设,求数列的前项和.
20.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:
来A城市发展的理由
人数
合计
自然环境
1.森林城市,空气清新
200
300
2.降水充足,气候怡人
100
人文环境
3.城市服务到位
150
700
4.创业氛围好
300
5.开放且包容
250
合计
1000
1000
(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;
(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;
(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?
自然环境
人文环境
合计
男
女
合计
附:,.
P()
0.050
0.010
0.001
k
3.841
6.635
10.828
21.(12分)已知函数.
(1)求不等式的解集;
(2)若关于的不等式在区间内无解,求实数的取值范围.
22.(10分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
级数
一级
二级
三级
四级
每月应纳税所得额(含税)
不超过3000元的部分
超过3000元至12000元的部分
超过12000元至25000元的部分
超过25000元至35000元的部分
税率
3
10
20
25
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据在关于对称的区间上概率相等的性质求解.
【题目详解】
,,
,.
故选:C.
【答案点睛】
本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.
2、C
【答案解析】
判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.
【题目详解】
,函数是奇函数,排除,
时,,时,,排除,
当时,,
时,,排除,
符合条件,故选C.
【答案点睛】
本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.
3、B
【答案解析】
先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.
【题目详解】
根据题意,阴影部分的面积的一半为:,
于是此点取自阴影部分的概率为.
又,故.
故选B.
【答案点睛】
本题考查了几何概型,定积分的计算以及几何意义,属于中档题.
4、D
【答案解析】
计算得到,,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.
【题目详解】
,,,
当沿轴正方向平移个单位时,重合,故②正确;
,,
故,函数关于对称,故④正确;
根据图像知:①③不正确;
故选:.
【答案点睛】
本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.
5、C
【答案解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.
【题目详解】
∵ ,.
当时,,在上单调递增,不合题意.
当时,,在上单调递减,也不合题意.
当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.
综上,的取值范围是.
故选C.
【答案点睛】
本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.
6、A
【答案解析】
将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.
【题目详解】
依题意,由对数函数的性质可得.
又因为,故.
故选:A.
【答案点睛】
本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.
7、D
【答案解析】
构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.
【题目详解】
构造函数,,
则,,
所以,函数、在区间上均为减函数,
当时,则,;当时,,.
由得.
①若,则,即,不合乎题意;
②若,则,则,
此时,,
由于函数在区间上单调递增,函数在区间上单调递增,则,;
③若,则,则,
此时,
由于函数在区间上单调递减,函数在区间上单调递增,则,.
综上所述,.
故选:D.
【答案点睛】
本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.
8、A
【答案解析】
将已知条件转化为的形式,由此确定数列为的项.
【题目详解】
由于等差数列中,所以,化简得,所以为.
故选:A
【答案点睛】
本小题主要考查等差数列的基本量计算,属于基础题.
9、B
【答案解析】
根据二项分布的性质可得:,再根据和二次函数的性质求解.
【题目详解】
因为随机变量满足,,.
所以服从二项分布,
由二项分布的性质可得:,
因为,
所以,
由二次函数的性质可得:,在上单调递减,
所以.
故选:B
【答案点睛】
本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.
10、D
【答案解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.
【题目详解】
取,,数列恒单调递增,且不存在最大值,故排除AB选项;
由蛛网图可知,存在两个不动点,且,,
因为当时,数列单调递增,则;
当时,数列单调递减,则;
所以要使,只需要,故,化简得且.
故选:D.
【答案点睛】
本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.
11、B
【答案解析】
根据比例关系求得会旗中五环所占面积,再计算比值.
【题目详解】
设会旗中五环所占面积为