温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
衡水市
重点中学
高考
冲刺
模拟
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )
A. B.
C. D.
2.复数(为虚数单位),则等于( )
A.3 B.
C.2 D.
3.在中,为中点,且,若,则( )
A. B. C. D.
4.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )
A. B. C. D.
5.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )
A.乙的数据分析素养优于甲
B.乙的数学建模素养优于数学抽象素养
C.甲的六大素养整体水平优于乙
D.甲的六大素养中数据分析最差
6.函数与在上最多有n个交点,交点分别为(,……,n),则( )
A.7 B.8 C.9 D.10
7.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为( )
A. B. C. D.
8.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是
A.函数的最小正周期是
B.函数的图象关于点成中心对称
C.函数在单调递增
D.函数的图象向右平移后关于原点成中心对称
9.若双曲线的渐近线与圆相切,则双曲线的离心率为( )
A.2 B. C. D.
10.点在所在的平面内,,,,,且,则( )
A. B. C. D.
11.若直线经过抛物线的焦点,则( )
A. B. C.2 D.
12.设非零向量,,,满足,,且与的夹角为,则“”是“”的( ).
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,,,若,则的取值范围是_______.
14.若实数满足不等式组则目标函数的最大值为__________.
15.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.
16.已知函数,对于任意都有,则的值为______________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元)
产品销量 (件)
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.
18.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若的解集包含,求的取值范围.
19.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
20.(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).
(1)求抛物线C的方程;
(2)①求证:四边形是平行四边形.
②四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.
21.(12分)如图,在四棱柱中,底面为菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求二面角的余弦值.
22.(10分)已知函数.
(1)当a=2时,求不等式的解集;
(2)设函数.当时,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.
【题目详解】
由条件可得
函数关于直线对称;
在,上单调递增,且在时使得;
又
,,所以选项成立;
,比离对称轴远,
可得,选项成立;
,,可知比离对称轴远
,选项成立;
,符号不定,,无法比较大小,
不一定成立.
故选:.
【答案点睛】
本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.
2、D
【答案解析】
利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.
【题目详解】
,
所以,,
故选:D.
【答案点睛】
该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.
3、B
【答案解析】
选取向量,为基底,由向量线性运算,求出,即可求得结果.
【题目详解】
, ,
,
,,.
故选:B.
【答案点睛】
本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.
4、A
【答案解析】
在中,由余弦定理,得到,再利用即可建立的方程.
【题目详解】
由已知,,在中,由余弦定理,得
,又,,所以,
,
故选:A.
【答案点睛】
本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.
5、C
【答案解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.
【题目详解】
根据雷达图得到如下数据:
数学抽象
逻辑推理
数学建模
直观想象
数学运算
数据分析
甲
4
5
4
5
4
5
乙
3
4
3
3
5
4
由数据可知选C.
【答案点睛】
本题考查统计问题,考查数据处理能力和应用意识.
6、C
【答案解析】
根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.
【题目详解】
由题可知:直线过定点
且在是关于对称
如图
通过图像可知:直线与最多有9个交点
同时点左、右边各四个交点关于对称
所以
故选:C
【答案点睛】
本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.
7、D
【答案解析】
由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.
【题目详解】
如图;设AB的中点为D;
∵PA,PB,AB=4,
∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;
设外接球球心为O;
∵CA=CB,面PAB⊥面ABC,
∴CD⊥AB可得CD⊥面PAB;且DC.
∴O在CD上;
故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;
∴球O的表面积为:4πR2=4π.
故选:D.
【答案点睛】
本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.
8、B
【答案解析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.
【题目详解】
根据给定函数的图象,可得点的横坐标为,所以,解得,
所以的最小正周期, 不妨令,,由周期,所以,
又,所以,所以,
令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.
【答案点睛】
本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.
9、C
【答案解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.
【题目详解】
由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,
所以,.
故选:C.
【答案点睛】
本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.
10、D
【答案解析】
确定点为外心,代入化简得到,,再根据计算得到答案.
【题目详解】
由可知,点为外心,
则,,又,
所以①
因为,②
联立方程①②可得,,,因为,
所以,即.
故选:
【答案点睛】
本题考查了向量模长的计算,意在考查学生的计算能力.
11、B
【答案解析】
计算抛物线的交点为,代入计算得到答案.
【题目详解】
可化为,焦点坐标为,故.
故选:.
【答案点睛】
本题考查了抛物线的焦点,属于简单题.
12、C
【答案解析】
利用数量积的定义可得,即可判断出结论.
【题目详解】
解:,,,
解得,,,解得,
“”是“”的充分必要条件.
故选:C.
【答案点睛】
本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果.
【题目详解】
设,,,则,
由,得,代入椭圆方程,
得,化简得恒成立,
由此得,即,故.
故答案为:
【答案点睛】
此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 .
14、12
【答案解析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.
【题目详解】
根据约束条件画出可行域,如下图,由,解得
目标函数,当过点时,有最大值,且最大值为.
故答案为:.
【答案点睛】
本题考查线性规划的简单应用,属于基础题.
15、64
【答案解析】
由题意先求得的值,再令求出展开式中所有项的系数和.
【题目详解】
的展开式中项的系数与项的系数分别为135与,
,,
由两式可组成方程组,
解得或,
令,求得展开式中所有的系数之和为.
故答案为:64
【答案点睛】
本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.
16、
【答案解析】
由条件得到函数的对称性,从而得到结果
【题目详解】
∵f=f,
∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.
∴f=±2.
【答案点睛】
本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)乙同学正确
(2)分布列见解析,
【答案解析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;
(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.