分享
2023学年福建厦门湖滨中学高考仿真卷数学试卷(含解析).doc
下载文档

ID:16411

大小:3.02MB

页数:24页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 福建厦门 湖滨 中学 高考 仿真 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( ) A. B. C. D. 2.过双曲线 的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为( ) A. B. C. D. 3.如图是一个几何体的三视图,则该几何体的体积为(  ) A. B. C. D. 4.设函数恰有两个极值点,则实数的取值范围是( ) A. B. C. D. 5.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ) A.23 B.21 C.35 D.32 6.已知等差数列中,,则( ) A.20 B.18 C.16 D.14 7.复数(为虚数单位),则的共轭复数在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( ) A. B. C. D. 9.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( ) A. B. C. D. 10.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为 A. B. C. D. 11.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为( ) A. B. C. D. 12.的展开式中的系数是( ) A.160 B.240 C.280 D.320 二、填空题:本题共4小题,每小题5分,共20分。 13.展开式中的系数的和大于8而小于32,则______. 14.如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为. (1)求关于的函数解析式; (2)当为何值时,面积为最小,政府投资最低? 15.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______. 16.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立. (1)求一件手工艺品质量为B级的概率; (2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元. ①求10件手工艺品中不能外销的手工艺品最有可能是多少件; ②记1件手工艺品的利润为X元,求X的分布列与期望. 18.(12分)在多面体中,四边形是正方形,平面,,,为的中点. (1)求证:; (2)求平面与平面所成角的正弦值. 19.(12分)已知函数,. (1)若,,求实数的值. (2)若,,求正实数的取值范围. 20.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于. (1)求证:平面平面; (2)求二面角的余弦值. 21.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点. (1)求椭圆的方程; (2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由. 22.(10分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求和的直角坐标方程; (2)已知为曲线上的一个动点,求线段的中点到直线的最大距离. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可. 【题目详解】 解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由, 得,当时,. 故选D. 【答案点睛】 本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题. 2、C 【答案解析】 由题意可得双曲线的渐近线的方程为. ∵为线段的中点, ∴,则为等腰三角形. ∴ 由双曲线的的渐近线的性质可得 ∴ ∴,即. ∴双曲线的离心率为 故选C. 点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围). 3、A 【答案解析】 根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【题目详解】 由三视图可知几何体为直三棱柱,直观图如图所示: 其中,底面为直角三角形,,,高为. ∴该几何体的体积为 故选:A. 【答案点睛】 本题考查三视图及棱柱的体积,属于基础题. 4、C 【答案解析】 恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件. 【题目详解】 由题意知函数的定义域为, . 因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1. 令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是. 故选:C 【答案点睛】 本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题. 5、B 【答案解析】 根据随机数表法的抽样方法,确定选出来的第5个个体的编号. 【题目详解】 随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21. 故选:B 【答案点睛】 本小题主要考查随机数表法进行抽样,属于基础题. 6、A 【答案解析】 设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可. 【题目详解】 设等差数列的公差为.由得,解得.所以. 故选:A 【答案点睛】 本题主要考查了等差数列的基本量求解,属于基础题. 7、C 【答案解析】 由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得 【题目详解】 解析:,, 对应点为,在第三象限. 故选:C. 【答案点睛】 本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键. 8、B 【答案解析】 根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件. 【题目详解】 执行框图如下: 初始值:, 第一步:,此时不能输出,继续循环; 第二步:,此时不能输出,继续循环; 第三步:,此时不能输出,继续循环; 第四步:,此时不能输出,继续循环; 第五步:,此时不能输出,继续循环; 第六步:,此时要输出,结束循环; 故,判断条件为. 故选B 【答案点睛】 本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型. 9、D 【答案解析】 如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积. 【题目详解】 如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,. 因为,故, 因为,故. 由正弦定理可得,故,又因为,故. 因为,故平面,所以, 因为平面,平面,故,故, 所以四边形为平行四边形,所以, 所以,故外接球的半径为,外接球的表面积为. 故选:D. 【答案点睛】 本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度. 10、C 【答案解析】 由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C. 11、D 【答案解析】 根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积. 【题目详解】 设为中点,是等边三角形, 所以, 又因为,且, 所以平面,则, 由三线合一性质可知 所以三棱锥为正三棱锥, 设底面等边的重心为, 可得,, 所以三棱锥的外接球球心在面下方,设为,如下图所示: 由球的性质可知,平面,且在同一直线上,设球的半径为, 在中,, 即, 解得, 所以三棱锥的外接球表面积为, 故选:D. 【答案点睛】 本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题. 12、C 【答案解析】 首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开